Photochemical Control of Network Topology in PEG Hydrogels

IF 27.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Materials Pub Date : 2024-09-28 DOI:10.1002/adma.202409603
Bruce E. Kirkpatrick, Grace K. Hach, Benjamin R. Nelson, Nathaniel P. Skillin, Joshua S. Lee, Lea Pearl Hibbard, Abhishek P. Dhand, Henry S. Grotheer, Connor E. Miksch, Violeta Salazar, Tayler S. Hebner, Sean P. Keyser, Joshua T. Kamps, Jasmine Sinha, Laura J. Macdougall, Benjamin D. Fairbanks, Jason A. Burdick, Timothy J. White, Christopher N. Bowman, Kristi S. Anseth
{"title":"Photochemical Control of Network Topology in PEG Hydrogels","authors":"Bruce E. Kirkpatrick, Grace K. Hach, Benjamin R. Nelson, Nathaniel P. Skillin, Joshua S. Lee, Lea Pearl Hibbard, Abhishek P. Dhand, Henry S. Grotheer, Connor E. Miksch, Violeta Salazar, Tayler S. Hebner, Sean P. Keyser, Joshua T. Kamps, Jasmine Sinha, Laura J. Macdougall, Benjamin D. Fairbanks, Jason A. Burdick, Timothy J. White, Christopher N. Bowman, Kristi S. Anseth","doi":"10.1002/adma.202409603","DOIUrl":null,"url":null,"abstract":"Hydrogels are often synthesized through photoinitiated step-, chain-, and mixed-mode polymerizations, generating diverse network topologies and resultant material properties that depend on the underlying network connectivity. While many photocrosslinking reactions are available, few afford controllable connectivity of the hydrogel network. Herein, a versatile photochemical strategy is introduced for tuning the structure of poly(ethylene glycol) (PEG) hydrogels using macromolecular monomers functionalized with maleimide and styrene moieties. Hydrogels are prepared along a gradient of topologies by varying the ratio of step-growth (maleimide dimerization) to chain-growth (maleimide-styrene alternating copolymerization) network-forming reactions. The initial PEG content and final network physical properties (e.g., modulus, swelling, diffusivity) are tailored in an independent manner, highlighting configurable gel mechanics and reactivity. These photochemical reactions allow high-fidelity photopatterning and 3D printing and are compatible with 2D and 3D cell culture. Ultimately, this photopolymer chemistry allows facile control over network connectivity to achieve adjustable material properties for broad applications.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":null,"pages":null},"PeriodicalIF":27.4000,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202409603","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Hydrogels are often synthesized through photoinitiated step-, chain-, and mixed-mode polymerizations, generating diverse network topologies and resultant material properties that depend on the underlying network connectivity. While many photocrosslinking reactions are available, few afford controllable connectivity of the hydrogel network. Herein, a versatile photochemical strategy is introduced for tuning the structure of poly(ethylene glycol) (PEG) hydrogels using macromolecular monomers functionalized with maleimide and styrene moieties. Hydrogels are prepared along a gradient of topologies by varying the ratio of step-growth (maleimide dimerization) to chain-growth (maleimide-styrene alternating copolymerization) network-forming reactions. The initial PEG content and final network physical properties (e.g., modulus, swelling, diffusivity) are tailored in an independent manner, highlighting configurable gel mechanics and reactivity. These photochemical reactions allow high-fidelity photopatterning and 3D printing and are compatible with 2D and 3D cell culture. Ultimately, this photopolymer chemistry allows facile control over network connectivity to achieve adjustable material properties for broad applications.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
光化学控制 PEG 水凝胶的网络拓扑结构
水凝胶通常是通过光引发的阶跃、链和混合模式聚合反应合成的,可产生不同的网络拓扑结构,其材料特性取决于基本的网络连接性。虽然有许多光交联反应,但很少有反应能提供可控的水凝胶网络连通性。本文介绍了一种多功能光化学策略,利用马来酰亚胺和苯乙烯分子官能化的大分子单体调整聚乙二醇(PEG)水凝胶的结构。通过改变阶跃生长(马来酰亚胺二聚化)和链式生长(马来酰亚胺-苯乙烯交替共聚)网络形成反应的比例,制备出拓扑结构梯度的水凝胶。最初的 PEG 含量和最终的网络物理性质(如模量、膨胀性、扩散性)是以独立的方式定制的,突出了可配置的凝胶力学和反应性。这些光化学反应可实现高保真光图案化和三维打印,并与二维和三维细胞培养兼容。最终,这种光聚合物化学反应可轻松控制网络连接,从而实现可调节的材料特性,应用领域十分广泛。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
期刊最新文献
Unlocking Efficient Alkaline Hydrogen Evolution Through Ru–Sn Dual Metal Sites and a Novel Hydroxyl Spillover Effect Photochemical Control of Network Topology in PEG Hydrogels Emerging Opportunities of Colloidal Quantum Dots for Photocatalytic Organic Transformations A Perspective on Electrochemical Point Source Utilization of CO2 and Other Flue Gas Components to Value Added Chemicals Microfiber Actuators With Hot-Pressing-Programmable Mechano-Photothermal Responses for Electromagnetic Perception
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1