{"title":"Circadian disruption promotes the neurotoxicity of oligomeric alpha-synuclein in mice","authors":"Jin-Bao Zhang, Xiao-Jie Wan, Wen-Xiang Duan, Xue-Qin Dai, Dong Xia, Xiang Fu, Li-Fang Hu, Fen Wang, Chun-Feng Liu","doi":"10.1038/s41531-024-00798-9","DOIUrl":null,"url":null,"abstract":"<p>Circadian disruption often arises prior to the onset of typical motor deficits in patients with Parkinson’s disease (PD). It remains unclear whether such a prevalent non-motor manifestation would contribute to the progression of PD. Diffusible oligomeric alpha-synuclein (O-αSyn) is perceived as the most toxic and rapid-transmitted species in the early stages of PD. Exploring the factors that influence the spread and toxicity of O-αSyn should be helpful for developing effective interventions for the disease. The aim of this study was to explore the effects of circadian disruption on PD pathology and parkinsonism-like behaviors in a novel mouse model induced by O-αSyn. We discovered that O-αSyn could enter the brain rapidly following intranasal administration, resulting in the formation of nitrated-αSyn pathology and non-motor symptoms of the mice. Meanwhile, circadian disruption exacerbated the burden of nitrated-αSyn pathology and accelerated the loss of dopaminergic neurons in O-αSyn-treated mice. Subsequent experiments demonstrated that circadian disruption might act via promoting nitrative stress and neuroinflammation. These findings could highlight the circadian rhythms as a potential diagnostic and therapeutic target in early-stage PD.</p>","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Nano Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41531-024-00798-9","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Circadian disruption often arises prior to the onset of typical motor deficits in patients with Parkinson’s disease (PD). It remains unclear whether such a prevalent non-motor manifestation would contribute to the progression of PD. Diffusible oligomeric alpha-synuclein (O-αSyn) is perceived as the most toxic and rapid-transmitted species in the early stages of PD. Exploring the factors that influence the spread and toxicity of O-αSyn should be helpful for developing effective interventions for the disease. The aim of this study was to explore the effects of circadian disruption on PD pathology and parkinsonism-like behaviors in a novel mouse model induced by O-αSyn. We discovered that O-αSyn could enter the brain rapidly following intranasal administration, resulting in the formation of nitrated-αSyn pathology and non-motor symptoms of the mice. Meanwhile, circadian disruption exacerbated the burden of nitrated-αSyn pathology and accelerated the loss of dopaminergic neurons in O-αSyn-treated mice. Subsequent experiments demonstrated that circadian disruption might act via promoting nitrative stress and neuroinflammation. These findings could highlight the circadian rhythms as a potential diagnostic and therapeutic target in early-stage PD.
期刊介绍:
ACS Applied Nano Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics and biology relevant to applications of nanomaterials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important applications of nanomaterials.