Yanfang Liu, Hongwei Fu, Caitian Gao, Jie Wen, Ruoya Guo, Wendi Luo, Jiawan Zhou, Bingan Lu
{"title":"Solvation Structure Dual-Regulator Enabled Multidimensional Improvement for Low-Temperature Potassium Ion Batteries","authors":"Yanfang Liu, Hongwei Fu, Caitian Gao, Jie Wen, Ruoya Guo, Wendi Luo, Jiawan Zhou, Bingan Lu","doi":"10.1002/aenm.202403562","DOIUrl":null,"url":null,"abstract":"The operation of graphite-based potassium ion batteries (Gr-PIBs) remains challenging at low temperatures, limited by slow dynamic behavior. Herein, the solvation structure dual-regulator strategy of electrolyte is proposed for multidimensional improvement of K<sup>+</sup> transfer process including ion transfer at both bulk and interface. The designed electrolyte (an amide solvent, 2,2,2-Trifluoro-N, N-dimethylacetamide) with low freezing point and low viscosity as the primary regulator, and a fluorinated solvent (1,1,2,2-Tetrafluoroethyl-2,2,3,3-tetrafluoropropylether) as the secondary regulator provides a flowing environment and low resistive interface for fast ion transfer. As a result, the regulated electrolyte has a low freezing point of −51.9 °C and exhibits a high ionic conductivity of 3.2 mS cm<sup>−1</sup> at −20 °C. Based on the solvation structure dual-regulator, the graphite anode delivered a high capacity of 252 mAh g<sup>−1</sup> which is over 85% of room-temperature capacity, and the capacity retention rate of a full cell at −20 °C is over 80%. These results demonstrate that the solvation structure dual-regulator can improve the performances of Gr-PIBs, promoting the development of low-temperature PIBs and beyond.","PeriodicalId":111,"journal":{"name":"Advanced Energy Materials","volume":null,"pages":null},"PeriodicalIF":24.4000,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/aenm.202403562","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The operation of graphite-based potassium ion batteries (Gr-PIBs) remains challenging at low temperatures, limited by slow dynamic behavior. Herein, the solvation structure dual-regulator strategy of electrolyte is proposed for multidimensional improvement of K+ transfer process including ion transfer at both bulk and interface. The designed electrolyte (an amide solvent, 2,2,2-Trifluoro-N, N-dimethylacetamide) with low freezing point and low viscosity as the primary regulator, and a fluorinated solvent (1,1,2,2-Tetrafluoroethyl-2,2,3,3-tetrafluoropropylether) as the secondary regulator provides a flowing environment and low resistive interface for fast ion transfer. As a result, the regulated electrolyte has a low freezing point of −51.9 °C and exhibits a high ionic conductivity of 3.2 mS cm−1 at −20 °C. Based on the solvation structure dual-regulator, the graphite anode delivered a high capacity of 252 mAh g−1 which is over 85% of room-temperature capacity, and the capacity retention rate of a full cell at −20 °C is over 80%. These results demonstrate that the solvation structure dual-regulator can improve the performances of Gr-PIBs, promoting the development of low-temperature PIBs and beyond.
期刊介绍:
Established in 2011, Advanced Energy Materials is an international, interdisciplinary, English-language journal that focuses on materials used in energy harvesting, conversion, and storage. It is regarded as a top-quality journal alongside Advanced Materials, Advanced Functional Materials, and Small.
With a 2022 Impact Factor of 27.8, Advanced Energy Materials is considered a prime source for the best energy-related research. The journal covers a wide range of topics in energy-related research, including organic and inorganic photovoltaics, batteries and supercapacitors, fuel cells, hydrogen generation and storage, thermoelectrics, water splitting and photocatalysis, solar fuels and thermosolar power, magnetocalorics, and piezoelectronics.
The readership of Advanced Energy Materials includes materials scientists, chemists, physicists, and engineers in both academia and industry. The journal is indexed in various databases and collections, such as Advanced Technologies & Aerospace Database, FIZ Karlsruhe, INSPEC (IET), Science Citation Index Expanded, Technology Collection, and Web of Science, among others.