DC²T: Disentanglement-Guided Consolidation and Consistency Training for Semi-Supervised Cross-Site Continual Segmentation

Jingyang Zhang;Jialun Pei;Dunyuan Xu;Yueming Jin;Pheng-Ann Heng
{"title":"DC²T: Disentanglement-Guided Consolidation and Consistency Training for Semi-Supervised Cross-Site Continual Segmentation","authors":"Jingyang Zhang;Jialun Pei;Dunyuan Xu;Yueming Jin;Pheng-Ann Heng","doi":"10.1109/TMI.2024.3469528","DOIUrl":null,"url":null,"abstract":"Continual Learning (CL) is recognized to be a storage-efficient and privacy-protecting approach for learning from sequentially-arriving medical sites. However, most existing CL methods assume that each site is fully labeled, which is impractical due to budget and expertise constraint. This paper studies the Semi-Supervised Continual Learning (SSCL) that adopts partially-labeled sites arriving over time, with each site delivering only limited labeled data while the majority remains unlabeled. In this regard, it is challenging to effectively utilize unlabeled data under dynamic cross-site domain gaps, leading to intractable model forgetting on such unlabeled data. To address this problem, we introduce a novel Disentanglement-guided Consolidation and Consistency Training (DC2T) framework, which roots in an Online Semi-Supervised representation Disentanglement (OSSD) perspective to excavate content representations of partially labeled data from sites arriving over time. Moreover, these content representations are required to be consolidated for site-invariance and calibrated for style-robustness, in order to alleviate forgetting even in the absence of ground truth. Specifically, for the invariance on previous sites, we retain historical content representations when learning on a new site, via a Content-inspired Parameter Consolidation (CPC) method that prevents altering the model parameters crucial for content preservation. For the robustness against style variation, we develop a Style-induced Consistency Training (SCT) scheme that enforces segmentation consistency over style-related perturbations to recalibrate content encoding. We extensively evaluate our method on fundus and cardiac image segmentation, indicating the advantage over existing SSCL methods for alleviating forgetting on unlabeled data.","PeriodicalId":94033,"journal":{"name":"IEEE transactions on medical imaging","volume":"44 2","pages":"903-914"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on medical imaging","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10697209/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Continual Learning (CL) is recognized to be a storage-efficient and privacy-protecting approach for learning from sequentially-arriving medical sites. However, most existing CL methods assume that each site is fully labeled, which is impractical due to budget and expertise constraint. This paper studies the Semi-Supervised Continual Learning (SSCL) that adopts partially-labeled sites arriving over time, with each site delivering only limited labeled data while the majority remains unlabeled. In this regard, it is challenging to effectively utilize unlabeled data under dynamic cross-site domain gaps, leading to intractable model forgetting on such unlabeled data. To address this problem, we introduce a novel Disentanglement-guided Consolidation and Consistency Training (DC2T) framework, which roots in an Online Semi-Supervised representation Disentanglement (OSSD) perspective to excavate content representations of partially labeled data from sites arriving over time. Moreover, these content representations are required to be consolidated for site-invariance and calibrated for style-robustness, in order to alleviate forgetting even in the absence of ground truth. Specifically, for the invariance on previous sites, we retain historical content representations when learning on a new site, via a Content-inspired Parameter Consolidation (CPC) method that prevents altering the model parameters crucial for content preservation. For the robustness against style variation, we develop a Style-induced Consistency Training (SCT) scheme that enforces segmentation consistency over style-related perturbations to recalibrate content encoding. We extensively evaluate our method on fundus and cardiac image segmentation, indicating the advantage over existing SSCL methods for alleviating forgetting on unlabeled data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
DC2T:用于半监督跨站点连续分割的分离引导巩固和一致性训练
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Table of Contents Table of Contents Table of Contents Building a Synthetic Vascular Model: Evaluation in an Intracranial Aneurysms Detection Scenario. FAMF-Net: Feature Alignment Mutual Attention Fusion with Region Awareness for Breast Cancer Diagnosis via Imbalanced Data.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1