Sandra Pereira, Ana Monteiro, José Moutinho-Pereira, Lia-Tânia Dinis
{"title":"Silicon, An Emergent Strategy to Lighten the Effects of (A)Biotic Stresses on Crops: A Review","authors":"Sandra Pereira, Ana Monteiro, José Moutinho-Pereira, Lia-Tânia Dinis","doi":"10.1111/jac.12762","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Silicon (Si) has emerged as a pivotal element influencing various aspects of plant growth and development. This review explores the multifaceted effects of Si on plants, encompassing both biotic and abiotic dimensions. Si, primarily absorbed by plants in the form of orthosilicic acid, demonstrates a diverse range of roles in enhancing plant resistance to environmental stresses. Biotic stresses, including pathogen attacks and insect infestations, are notably mitigated by the deposition of Si in plant tissues, fortifying cell walls and triggering defence mechanisms. Furthermore, Si plays a crucial role in alleviating abiotic stresses such as drought, salinity and metal toxicity, imparting resilience to plants in challenging environments. The interaction between Si and plant physiology involves intricate mechanisms, impacting nutrient uptake, photosynthesis and hormonal regulation. As research in this field advances, a comprehensive understanding of the nuanced effects of Si on plants emerges, paving the way for innovative agricultural practices and the development of stress-resistant crop varieties. This review delves into the contemporary knowledge surrounding the effects of Si on plants, underscoring its significance in promoting plant resilience and sustainable agriculture.</p>\n </div>","PeriodicalId":14864,"journal":{"name":"Journal of Agronomy and Crop Science","volume":"210 6","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Agronomy and Crop Science","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jac.12762","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0
Abstract
Silicon (Si) has emerged as a pivotal element influencing various aspects of plant growth and development. This review explores the multifaceted effects of Si on plants, encompassing both biotic and abiotic dimensions. Si, primarily absorbed by plants in the form of orthosilicic acid, demonstrates a diverse range of roles in enhancing plant resistance to environmental stresses. Biotic stresses, including pathogen attacks and insect infestations, are notably mitigated by the deposition of Si in plant tissues, fortifying cell walls and triggering defence mechanisms. Furthermore, Si plays a crucial role in alleviating abiotic stresses such as drought, salinity and metal toxicity, imparting resilience to plants in challenging environments. The interaction between Si and plant physiology involves intricate mechanisms, impacting nutrient uptake, photosynthesis and hormonal regulation. As research in this field advances, a comprehensive understanding of the nuanced effects of Si on plants emerges, paving the way for innovative agricultural practices and the development of stress-resistant crop varieties. This review delves into the contemporary knowledge surrounding the effects of Si on plants, underscoring its significance in promoting plant resilience and sustainable agriculture.
期刊介绍:
The effects of stress on crop production of agricultural cultivated plants will grow to paramount importance in the 21st century, and the Journal of Agronomy and Crop Science aims to assist in understanding these challenges. In this context, stress refers to extreme conditions under which crops and forages grow. The journal publishes original papers and reviews on the general and special science of abiotic plant stress. Specific topics include: drought, including water-use efficiency, such as salinity, alkaline and acidic stress, extreme temperatures since heat, cold and chilling stress limit the cultivation of crops, flooding and oxidative stress, and means of restricting them. Special attention is on research which have the topic of narrowing the yield gap. The Journal will give preference to field research and studies on plant stress highlighting these subsections. Particular regard is given to application-oriented basic research and applied research. The application of the scientific principles of agricultural crop experimentation is an essential prerequisite for the publication. Studies based on field experiments must show that they have been repeated (at least three times) on the same organism or have been conducted on several different varieties.