Unveiling micro-scale mechanisms of in-situ silicon alloying for tailoring mechanical properties in titanium alloys: Experiments and computational modeling
Sisi Tang, Li Li, Jinlong Su, Yuan Yuan, Yong Han, Jinglian Fan
{"title":"Unveiling micro-scale mechanisms of in-situ silicon alloying for tailoring mechanical properties in titanium alloys: Experiments and computational modeling","authors":"Sisi Tang, Li Li, Jinlong Su, Yuan Yuan, Yong Han, Jinglian Fan","doi":"10.1016/j.jmst.2024.08.064","DOIUrl":null,"url":null,"abstract":"Titanium-silicon (Ti-Si) alloy system shows significant potential for aerospace and automotive applications due to its superior specific strength, creep resistance, and oxidation resistance. For Si-containing Ti alloys, the sufficient content of Si is critical for achieving these favorable performances, while excessive Si addition will result in mechanical brittleness. Herein, both physical experiments and finite element (FE) simulations are employed to investigate the micro-mechanisms of Si alloying in tailoring the mechanical properties of Ti alloys. Four typical states of Si-containing Ti alloys (solid solution state, hypoeutectoid state, near-eutectoid state, hypereutectoid state) with varying Si content (0.3–1.2 wt.%) were fabricated via in-situ alloying spark plasma sintering. Experimental results indicate that in-situ alloying of 0.6 wt.% Si enhances the alloy's strength and ductility simultaneously due to the formation of fine and uniformly dispersed Ti<sub>5</sub>Si<sub>3</sub> particles, while higher content of Si (0.9 and 1.2 wt.%) results in coarser primary Ti<sub>5</sub>Si<sub>3</sub> agglomerations, deteriorating the ductility. FE simulations support these findings, highlighting the finer and more uniformly distributed Ti<sub>5</sub>Si<sub>3</sub> particles contribute to less stress concentration and promote uniform deformation across the matrix, while agglomerated Ti<sub>5</sub>Si<sub>3</sub> particles result in increased local stress concentrations, leading to higher chances of particle fracture and reduced ductility. This study not only elucidates the micro-mechanisms of in-situ Si alloying for tailoring the mechanical properties of Ti alloys but also aids in optimizing the design of high-performance Ti alloys.","PeriodicalId":16154,"journal":{"name":"Journal of Materials Science & Technology","volume":"25 1","pages":""},"PeriodicalIF":11.2000,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science & Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jmst.2024.08.064","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Titanium-silicon (Ti-Si) alloy system shows significant potential for aerospace and automotive applications due to its superior specific strength, creep resistance, and oxidation resistance. For Si-containing Ti alloys, the sufficient content of Si is critical for achieving these favorable performances, while excessive Si addition will result in mechanical brittleness. Herein, both physical experiments and finite element (FE) simulations are employed to investigate the micro-mechanisms of Si alloying in tailoring the mechanical properties of Ti alloys. Four typical states of Si-containing Ti alloys (solid solution state, hypoeutectoid state, near-eutectoid state, hypereutectoid state) with varying Si content (0.3–1.2 wt.%) were fabricated via in-situ alloying spark plasma sintering. Experimental results indicate that in-situ alloying of 0.6 wt.% Si enhances the alloy's strength and ductility simultaneously due to the formation of fine and uniformly dispersed Ti5Si3 particles, while higher content of Si (0.9 and 1.2 wt.%) results in coarser primary Ti5Si3 agglomerations, deteriorating the ductility. FE simulations support these findings, highlighting the finer and more uniformly distributed Ti5Si3 particles contribute to less stress concentration and promote uniform deformation across the matrix, while agglomerated Ti5Si3 particles result in increased local stress concentrations, leading to higher chances of particle fracture and reduced ductility. This study not only elucidates the micro-mechanisms of in-situ Si alloying for tailoring the mechanical properties of Ti alloys but also aids in optimizing the design of high-performance Ti alloys.
期刊介绍:
Journal of Materials Science & Technology strives to promote global collaboration in the field of materials science and technology. It primarily publishes original research papers, invited review articles, letters, research notes, and summaries of scientific achievements. The journal covers a wide range of materials science and technology topics, including metallic materials, inorganic nonmetallic materials, and composite materials.