Porous carbon pellets for physical adsorption of CO2: size and shape effect†

IF 5.2 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Materials Advances Pub Date : 2024-09-04 DOI:10.1039/D4MA00703D
Baljeet Singh, Marianna Kemell and Timo Repo
{"title":"Porous carbon pellets for physical adsorption of CO2: size and shape effect†","authors":"Baljeet Singh, Marianna Kemell and Timo Repo","doi":"10.1039/D4MA00703D","DOIUrl":null,"url":null,"abstract":"<p >The continuous rise in atmospheric CO<small><sub>2</sub></small> level is a major concern, demanding the development of low-cost, scalable porous sorbents with improved efficiency and recyclability. The current chemical adsorption methods are energy-intensive, creating a demand for low-energy CO<small><sub>2</sub></small> capture/removal strategies. Physical adsorption of CO<small><sub>2</sub></small> offers an efficient and low-energy alternative. This study explores the design and screening of porous carbon pellets for physical adsorption of CO<small><sub>2</sub></small> from 15% CO<small><sub>2</sub></small> in N<small><sub>2</sub></small> at 30 °C. Various sizes of spherical pellets were designed and investigated for their effect on adsorption capacity and kinetics. Changing the shape from spherical to flakes increased the CO<small><sub>2</sub></small> adsorption capacity to 2.2 wt% (0.5 mmol g<small><sup>−1</sup></small>). The pellets were also analysed for cyclic adsorption–desorption to access long-term stability and recyclability, showing approximately 80% selectivity for CO<small><sub>2</sub></small> over N<small><sub>2</sub></small> over 20 cycles.</p>","PeriodicalId":18242,"journal":{"name":"Materials Advances","volume":null,"pages":null},"PeriodicalIF":5.2000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ma/d4ma00703d?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Advances","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/ma/d4ma00703d","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The continuous rise in atmospheric CO2 level is a major concern, demanding the development of low-cost, scalable porous sorbents with improved efficiency and recyclability. The current chemical adsorption methods are energy-intensive, creating a demand for low-energy CO2 capture/removal strategies. Physical adsorption of CO2 offers an efficient and low-energy alternative. This study explores the design and screening of porous carbon pellets for physical adsorption of CO2 from 15% CO2 in N2 at 30 °C. Various sizes of spherical pellets were designed and investigated for their effect on adsorption capacity and kinetics. Changing the shape from spherical to flakes increased the CO2 adsorption capacity to 2.2 wt% (0.5 mmol g−1). The pellets were also analysed for cyclic adsorption–desorption to access long-term stability and recyclability, showing approximately 80% selectivity for CO2 over N2 over 20 cycles.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于物理吸附二氧化碳的多孔碳颗粒:尺寸和形状效应†.
大气中二氧化碳含量的持续上升是人们关注的一个主要问题,这就要求开发低成本、可扩展、高效率和可回收的多孔吸附剂。目前的化学吸附方法能耗高,因此需要低能耗的二氧化碳捕获/去除策略。二氧化碳的物理吸附提供了一种高效、低能耗的替代方法。本研究探索了多孔碳颗粒的设计和筛选,用于在 30 °C 下物理吸附 15% CO2 在 N2 中的二氧化碳。我们设计了各种尺寸的球形颗粒,并研究了它们对吸附容量和动力学的影响。将形状从球形改为片状后,二氧化碳的吸附容量增加到 2.2 wt%(0.5 mmol g-1)。还对颗粒进行了循环吸附-解吸分析,以了解其长期稳定性和可回收性,结果表明,在 20 个循环中,二氧化碳对 N2 的选择性约为 80%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Materials Advances
Materials Advances MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
7.60
自引率
2.00%
发文量
665
审稿时长
5 weeks
期刊最新文献
Back cover Synthesis and magneto-dielectric properties of Ti-doped Ni0.5Zn0.5TixFe2−xO4 ferrite via a conventional sol–gel process Biocompatible and low-cost iodine-doped carbon dots as a bifunctional fluorescent and radiocontrast agent for X-ray CT imaging† Improved performance of a SWCNT/ZnO nanostructure-integrated silicon thin-film solar cell: role of annealing temperature Back cover
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1