{"title":"Enabling modern bioenergy deployment in Nigeria to support industry and local communities","authors":"Prince Anthony Okoro, Katie Chong, Mirjam Röder","doi":"10.1016/j.biombioe.2024.107403","DOIUrl":null,"url":null,"abstract":"<div><div>Nigeria intends to rank among the top 20 global economies by 2030 by focusing on industrialisation. However, limiting energy access may slow the rate of industrialisation. Bioenergy integration into Nigeria's energy mix can accelerate the industrialisation agenda due to the co-benefits it offers. We used a disaggregated approach to map agri-residue availability and identify knowledge gaps in agri-residue application to support modern and sustainable bioenergy integration into Nigeria's energy mix. Expert interviews with stakeholders from government departments, small- and large-scale industries, and feedstock producers were used to validate the biomass mapping. The output of the biomass mapping shows that residues from yam, sorghum, wheat, palm, cassava, rice, sugarcane, etc, have knowledge gaps in agri-residue application and they could support the industrialisation agenda of Nigeria. The output of the stakeholder engagement shows that fossil fuels are the main energy source for productive uses in Nigeria. Current waste management practices involve onsite burning and disposal on land. Bioenergy technologies currently deployed in Nigeria are predominantly anaerobic digestion and combustion. Stakeholders have a strong preference for electricity to be the predominant energy vector. However, awareness of modern bioenergy applications and technologies was limited even though Nigeria's Energy Masterplan supports the efficient use of biomass to generate clean heat, electricity and biofuel for industrial, transport and household applications. Based on these findings, we have developed a suite of novel bioenergy case studies to support biomass integration into Nigeria's energy system.</div></div>","PeriodicalId":253,"journal":{"name":"Biomass & Bioenergy","volume":"190 ","pages":"Article 107403"},"PeriodicalIF":5.8000,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomass & Bioenergy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0961953424003568","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Nigeria intends to rank among the top 20 global economies by 2030 by focusing on industrialisation. However, limiting energy access may slow the rate of industrialisation. Bioenergy integration into Nigeria's energy mix can accelerate the industrialisation agenda due to the co-benefits it offers. We used a disaggregated approach to map agri-residue availability and identify knowledge gaps in agri-residue application to support modern and sustainable bioenergy integration into Nigeria's energy mix. Expert interviews with stakeholders from government departments, small- and large-scale industries, and feedstock producers were used to validate the biomass mapping. The output of the biomass mapping shows that residues from yam, sorghum, wheat, palm, cassava, rice, sugarcane, etc, have knowledge gaps in agri-residue application and they could support the industrialisation agenda of Nigeria. The output of the stakeholder engagement shows that fossil fuels are the main energy source for productive uses in Nigeria. Current waste management practices involve onsite burning and disposal on land. Bioenergy technologies currently deployed in Nigeria are predominantly anaerobic digestion and combustion. Stakeholders have a strong preference for electricity to be the predominant energy vector. However, awareness of modern bioenergy applications and technologies was limited even though Nigeria's Energy Masterplan supports the efficient use of biomass to generate clean heat, electricity and biofuel for industrial, transport and household applications. Based on these findings, we have developed a suite of novel bioenergy case studies to support biomass integration into Nigeria's energy system.
期刊介绍:
Biomass & Bioenergy is an international journal publishing original research papers and short communications, review articles and case studies on biological resources, chemical and biological processes, and biomass products for new renewable sources of energy and materials.
The scope of the journal extends to the environmental, management and economic aspects of biomass and bioenergy.
Key areas covered by the journal:
• Biomass: sources, energy crop production processes, genetic improvements, composition. Please note that research on these biomass subjects must be linked directly to bioenergy generation.
• Biological Residues: residues/rests from agricultural production, forestry and plantations (palm, sugar etc), processing industries, and municipal sources (MSW). Papers on the use of biomass residues through innovative processes/technological novelty and/or consideration of feedstock/system sustainability (or unsustainability) are welcomed. However waste treatment processes and pollution control or mitigation which are only tangentially related to bioenergy are not in the scope of the journal, as they are more suited to publications in the environmental arena. Papers that describe conventional waste streams (ie well described in existing literature) that do not empirically address ''new'' added value from the process are not suitable for submission to the journal.
• Bioenergy Processes: fermentations, thermochemical conversions, liquid and gaseous fuels, and petrochemical substitutes
• Bioenergy Utilization: direct combustion, gasification, electricity production, chemical processes, and by-product remediation
• Biomass and the Environment: carbon cycle, the net energy efficiency of bioenergy systems, assessment of sustainability, and biodiversity issues.