Carboxymethylcellulose Induced the Formation of Amorphous MnO2 Nanosheets With Abundant Oxygen Vacancies for Fast Ion Diffusion in Aqueous Zinc-Ion Batteries

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Functional Materials Pub Date : 2024-09-29 DOI:10.1002/adfm.202411990
Xu Zhang, Xinlei Ma, Hualin Bi, Yinfeng Zhang, Panpan Mi, Fengrui Liu, Xingchen Jin, Ying Chen, Kai Zhang, Jun Wang, Yanfeng Dong
{"title":"Carboxymethylcellulose Induced the Formation of Amorphous MnO2 Nanosheets With Abundant Oxygen Vacancies for Fast Ion Diffusion in Aqueous Zinc-Ion Batteries","authors":"Xu Zhang, Xinlei Ma, Hualin Bi, Yinfeng Zhang, Panpan Mi, Fengrui Liu, Xingchen Jin, Ying Chen, Kai Zhang, Jun Wang, Yanfeng Dong","doi":"10.1002/adfm.202411990","DOIUrl":null,"url":null,"abstract":"Manganese dioxide with high theoretical capacity has drawn a great deal of attention for aqueous zinc-ion batteries (ZIBs). Nevertheless, their sluggish diffusion kinetics, low electrical conductivity and limited active sites are still hindering the potential application in batteries. Herein, amorphous MnO<sub>2</sub> nanosheets with abundant oxygen vacancies are facilely prepared by using carboxymethylcellulose sodium (CMC) as a capping agent. During the growth process, CMC can preferentially attach to the (003) facet of MnO<sub>2</sub> to guide its crystal growth and morphology. The small nanosheets can expose abundant edge sites, along with the surface oxygen vacancies, to facilitate the insertion/extraction of H<sup>+</sup> and Zn<sup>2+</sup> in ZIBs. Moreover, the presence of CMC can stabilize the Mn<sup>3+</sup> to inhibit the Jahn–Teller effect in the preparation process. As a result, CMC-MnO<sub>2</sub> based ZIB can provide a specific capacity of 324 mAh g<sup>−1</sup> at 0.5 A g<sup>−1</sup>, and achieve 86.2% retention after a long cycle test of 1000 cycles. Furthermore, the energy storage mechanism may be attributed to the insertion/extraction of H<sup>+</sup>/Zn<sup>2+</sup>, dissolution/deposition of MnO<sub>2</sub> and Zn<sub>4</sub>SO<sub>4</sub>(OH)<sub>6</sub>·nH<sub>2</sub>O, and irreversible transformation of vermiculite during long cycles. This work may open new perspectives for the development of MnO<sub>2</sub>-based cathodes in ZIBs.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":null,"pages":null},"PeriodicalIF":18.5000,"publicationDate":"2024-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202411990","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Manganese dioxide with high theoretical capacity has drawn a great deal of attention for aqueous zinc-ion batteries (ZIBs). Nevertheless, their sluggish diffusion kinetics, low electrical conductivity and limited active sites are still hindering the potential application in batteries. Herein, amorphous MnO2 nanosheets with abundant oxygen vacancies are facilely prepared by using carboxymethylcellulose sodium (CMC) as a capping agent. During the growth process, CMC can preferentially attach to the (003) facet of MnO2 to guide its crystal growth and morphology. The small nanosheets can expose abundant edge sites, along with the surface oxygen vacancies, to facilitate the insertion/extraction of H+ and Zn2+ in ZIBs. Moreover, the presence of CMC can stabilize the Mn3+ to inhibit the Jahn–Teller effect in the preparation process. As a result, CMC-MnO2 based ZIB can provide a specific capacity of 324 mAh g−1 at 0.5 A g−1, and achieve 86.2% retention after a long cycle test of 1000 cycles. Furthermore, the energy storage mechanism may be attributed to the insertion/extraction of H+/Zn2+, dissolution/deposition of MnO2 and Zn4SO4(OH)6·nH2O, and irreversible transformation of vermiculite during long cycles. This work may open new perspectives for the development of MnO2-based cathodes in ZIBs.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
羧甲基纤维素诱导形成具有丰富氧空位的无定形二氧化锰纳米片,促进锌离子水电池中离子的快速扩散
具有高理论容量的二氧化锰在水性锌离子电池(ZIBs)中的应用引起了广泛关注。然而,其缓慢的扩散动力学、低导电性和有限的活性位点仍然阻碍着其在电池中的潜在应用。本文以羧甲基纤维素钠(CMC)为封端剂,轻松制备了具有丰富氧空位的无定形二氧化锰纳米片。在生长过程中,CMC 可优先附着在 MnO2 的(003)面上,引导其晶体生长和形态。小纳米片可以暴露出丰富的边缘位点和表面氧空位,从而促进 ZIB 中 H+ 和 Zn2+ 的插入/萃取。此外,CMC 的存在可以稳定 Mn3+,从而抑制制备过程中的 Jahn-Teller 效应。因此,基于 CMC-MnO2 的 ZIB 在 0.5 A g-1 的条件下可提供 324 mAh g-1 的比容量,并在 1000 次长周期测试后达到 86.2% 的保持率。此外,储能机制可能归因于 H+/Zn2+ 的插入/萃取、MnO2 和 Zn4SO4(OH)6-nH2O 的溶解/沉积以及蛭石在长循环过程中的不可逆转化。这项研究为在 ZIB 中开发基于 MnO2 的阴极开辟了新的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
期刊最新文献
Bioinspired Stretchable Strain Sensor with High Linearity and Superhydrophobicity for Underwater Applications Synergizing Proton‐Dominated Storage and Electron Transfer for High‐Loading, Fast‐Rate Organic Anode in Metal‐Free Aqueous Zinc‐Ion Batteries Enhanced Pyroelectricity Over Extended Thermal Range in Flexible Polymer Thin Films Stability Challenges in Industrialization of Perovskite Photovoltaics: From Atomic‐Scale View to Module Encapsulation Photothermal-Electric Excited Droplet Multibehavioral Manipulation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1