Ye Liu, Yifang Chen, Uyanga Batzorig, Jingting Li, Celia Fernández-Méndez, Samiksha Mahapatra, Fengwu Li, Shebin Sam, Tatsuya Dokoshi, Seung-Phil Hong, Teruaki Nakatsuji, Richard L. Gallo, George L. Sen
{"title":"The transcription regulators ZNF750 and LSD1/KDM1A dampen inflammation on the skin’s surface by silencing pattern recognition receptors","authors":"Ye Liu, Yifang Chen, Uyanga Batzorig, Jingting Li, Celia Fernández-Méndez, Samiksha Mahapatra, Fengwu Li, Shebin Sam, Tatsuya Dokoshi, Seung-Phil Hong, Teruaki Nakatsuji, Richard L. Gallo, George L. Sen","doi":"10.1016/j.immuni.2024.09.002","DOIUrl":null,"url":null,"abstract":"The surface of the skin is continually exposed to pro-inflammatory stimuli; however, it is unclear why it is not constantly inflamed due to this exposure. Here, we showed undifferentiated keratinocytes residing in the deep epidermis could trigger a strong inflammatory response due to their high expression of pattern recognition receptors (PRRs) that detect damage or pathogens. As keratinocytes differentiated, they migrated outward toward the surface of the skin and decreased their PRR expression, which led to dampened immune responses. ZNF750, a transcription factor expressed only in differentiated keratinocytes, recruited the histone demethylase KDM1A/LSD1 to silence genes coding for PRRs (<em>TLR3</em>, <em>IFIH1</em>/MDA5, and <em>DDX58</em>/RIG1). Loss of ZNF750 or KDM1A in human keratinocytes or mice resulted in sustained and excessive inflammation resembling psoriatic skin, which could be restored to homeostatic conditions upon silencing of <em>TLR3</em>. Our findings explain how the skin’s surface prevents excessive inflammation through ZNF750- and KDM1A-mediated suppression of PRRs.","PeriodicalId":13269,"journal":{"name":"Immunity","volume":"18 1","pages":""},"PeriodicalIF":25.5000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Immunity","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.immuni.2024.09.002","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The surface of the skin is continually exposed to pro-inflammatory stimuli; however, it is unclear why it is not constantly inflamed due to this exposure. Here, we showed undifferentiated keratinocytes residing in the deep epidermis could trigger a strong inflammatory response due to their high expression of pattern recognition receptors (PRRs) that detect damage or pathogens. As keratinocytes differentiated, they migrated outward toward the surface of the skin and decreased their PRR expression, which led to dampened immune responses. ZNF750, a transcription factor expressed only in differentiated keratinocytes, recruited the histone demethylase KDM1A/LSD1 to silence genes coding for PRRs (TLR3, IFIH1/MDA5, and DDX58/RIG1). Loss of ZNF750 or KDM1A in human keratinocytes or mice resulted in sustained and excessive inflammation resembling psoriatic skin, which could be restored to homeostatic conditions upon silencing of TLR3. Our findings explain how the skin’s surface prevents excessive inflammation through ZNF750- and KDM1A-mediated suppression of PRRs.
期刊介绍:
Immunity is a publication that focuses on publishing significant advancements in research related to immunology. We encourage the submission of studies that offer groundbreaking immunological discoveries, whether at the molecular, cellular, or whole organism level. Topics of interest encompass a wide range, such as cancer, infectious diseases, neuroimmunology, autoimmune diseases, allergies, mucosal immunity, metabolic diseases, and homeostasis.