Collapse of metallicity and high-Tc superconductivity in the high-pressure phase of FeSe0.89S0.11

IF 5.4 1区 物理与天体物理 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY npj Quantum Materials Pub Date : 2024-09-30 DOI:10.1038/s41535-024-00677-9
Pascal Reiss, Alix McCollam, Zachary Zajicek, Amir A. Haghighirad, Amalia I. Coldea
{"title":"Collapse of metallicity and high-Tc superconductivity in the high-pressure phase of FeSe0.89S0.11","authors":"Pascal Reiss, Alix McCollam, Zachary Zajicek, Amir A. Haghighirad, Amalia I. Coldea","doi":"10.1038/s41535-024-00677-9","DOIUrl":null,"url":null,"abstract":"<p>We investigate the high-pressure phase of the iron-based superconductor FeSe<sub>0.89</sub>S<sub>0.11</sub> using transport and tunnel diode oscillator studies using diamond anvil cells. We construct detailed pressure-temperature phase diagrams that indicate that the superconducting critical temperature is strongly enhanced by more than a factor of four towards 40 K above 4 GPa. The resistivity data reveal signatures of a fan-like structure of non-Fermi liquid behaviour which could indicate the existence of a putative quantum critical point buried underneath the superconducting dome around 4.3 GPa. With further increasing the pressure, the zero-field electrical resistivity develops a non-metallic temperature dependence and the superconducting transition broadens significantly. Eventually, the system fails to reach a fully zero-resistance state, and the finite resistance at low temperatures becomes strongly current-dependent. Our results suggest that the high-pressure, high-<i>T</i><sub>c</sub> phase of iron chalcogenides is very fragile and sensitive to uniaxial effects of the pressure medium, cell design and sample thickness. This high-pressure region could be understood assuming a real-space phase separation caused by nearly concomitant electronic and structural instabilities.</p>","PeriodicalId":19283,"journal":{"name":"npj Quantum Materials","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Quantum Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41535-024-00677-9","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

We investigate the high-pressure phase of the iron-based superconductor FeSe0.89S0.11 using transport and tunnel diode oscillator studies using diamond anvil cells. We construct detailed pressure-temperature phase diagrams that indicate that the superconducting critical temperature is strongly enhanced by more than a factor of four towards 40 K above 4 GPa. The resistivity data reveal signatures of a fan-like structure of non-Fermi liquid behaviour which could indicate the existence of a putative quantum critical point buried underneath the superconducting dome around 4.3 GPa. With further increasing the pressure, the zero-field electrical resistivity develops a non-metallic temperature dependence and the superconducting transition broadens significantly. Eventually, the system fails to reach a fully zero-resistance state, and the finite resistance at low temperatures becomes strongly current-dependent. Our results suggest that the high-pressure, high-Tc phase of iron chalcogenides is very fragile and sensitive to uniaxial effects of the pressure medium, cell design and sample thickness. This high-pressure region could be understood assuming a real-space phase separation caused by nearly concomitant electronic and structural instabilities.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
FeSe0.89S0.11 高压相中的金属性崩溃和高锝超导性
我们利用金刚石砧单元,通过传输和隧道二极管振荡器研究,对铁基超导体 FeSe0.89S0.11 的高压相进行了研究。我们构建了详细的压力-温度相图,表明超导临界温度在 4 GPa 以上向 40 K 强力提升了四倍多。电阻率数据揭示了非费米液体行为的扇形结构特征,这可能表明在 4.3 GPa 左右的超导穹顶下埋藏着一个假定的量子临界点。随着压力的进一步增加,零场电阻率出现了非金属温度依赖性,超导转变显著扩大。最终,系统无法达到完全的零电阻状态,低温下的有限电阻变得与电流密切相关。我们的研究结果表明,铁铬镧系元素的高压、高锝相非常脆弱,对压力介质的单轴效应、电池设计和样品厚度非常敏感。假设电子和结构不稳定性几乎同时发生,则可以理解这一高压区的实空间相分离。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
npj Quantum Materials
npj Quantum Materials Materials Science-Electronic, Optical and Magnetic Materials
CiteScore
10.60
自引率
3.50%
发文量
107
审稿时长
6 weeks
期刊介绍: npj Quantum Materials is an open access journal that publishes works that significantly advance the understanding of quantum materials, including their fundamental properties, fabrication and applications.
期刊最新文献
Charge order near the antiferromagnetic quantum critical point in the trilayer high Tc cuprate HgBa2Ca2Cu3O8+δ Collapse of metallicity and high-Tc superconductivity in the high-pressure phase of FeSe0.89S0.11 Interorbital antisymmetric hopping generated flat bands on kagome and pyrochlore Lattices Exploring possible magnetic monopoles-induced magneto-electricity in spin ices Observation of flat bands and Dirac cones in a pyrochlore lattice superconductor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1