Amorphous-Crystalline Interface Induced Internal Electric Fields for Electrochromic Smart Window

IF 6.7 1区 化学 Q1 CHEMISTRY, ANALYTICAL Analytical Chemistry Pub Date : 2024-09-30 DOI:10.1002/adma.202410355
Shi Zhang, Xiao Han, Xiaocheng Liu, Zixiang Huang, Pinyi Wang, Sizhe Sheng, Geng Wu, Jiachuan He, Jingjing Guo, Xusheng Zheng, Hai Li, Jian-Wei Liu, Xun Hong
{"title":"Amorphous-Crystalline Interface Induced Internal Electric Fields for Electrochromic Smart Window","authors":"Shi Zhang, Xiao Han, Xiaocheng Liu, Zixiang Huang, Pinyi Wang, Sizhe Sheng, Geng Wu, Jiachuan He, Jingjing Guo, Xusheng Zheng, Hai Li, Jian-Wei Liu, Xun Hong","doi":"10.1002/adma.202410355","DOIUrl":null,"url":null,"abstract":"Balancing optical modulation and response time is crucial for achieving high coloration efficiency in electrochromic materials. Here, internal electric fields are introduced to titanium dioxide nanosheets by constructing abundant amorphous-crystalline interfaces, ensuring large optical modulation while reducing response time and therefore improving coloration efficiency. Aberration-corrected high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) reveals the presence of numerous amorphous-crystalline phase boundaries in titanium dioxide nanosheets. Kelvin probe force microscopy (KPFM) exhibits an intense surface potential distribution, demonstrating the presence of internal electric fields. Density functional theory (DFT) calculations confirm that the amorphous-crystalline heterointerfaces can generate internal electric fields and reduce diffusion barriers of lithium ions. As a result, the amorphous-crystalline titanium dioxide nanosheets exhibit better coloration efficiency (35.1 cm<sup>2</sup> C<sup>−1</sup>) than pure amorphous and crystalline titanium dioxide nanosheets.","PeriodicalId":27,"journal":{"name":"Analytical Chemistry","volume":null,"pages":null},"PeriodicalIF":6.7000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Chemistry","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202410355","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Balancing optical modulation and response time is crucial for achieving high coloration efficiency in electrochromic materials. Here, internal electric fields are introduced to titanium dioxide nanosheets by constructing abundant amorphous-crystalline interfaces, ensuring large optical modulation while reducing response time and therefore improving coloration efficiency. Aberration-corrected high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) reveals the presence of numerous amorphous-crystalline phase boundaries in titanium dioxide nanosheets. Kelvin probe force microscopy (KPFM) exhibits an intense surface potential distribution, demonstrating the presence of internal electric fields. Density functional theory (DFT) calculations confirm that the amorphous-crystalline heterointerfaces can generate internal electric fields and reduce diffusion barriers of lithium ions. As a result, the amorphous-crystalline titanium dioxide nanosheets exhibit better coloration efficiency (35.1 cm2 C−1) than pure amorphous and crystalline titanium dioxide nanosheets.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于电致变色智能窗的非晶-晶体界面诱导内电场
要在电致变色材料中实现高着色效率,平衡光学调制和响应时间至关重要。在这里,通过构建丰富的非晶-晶体界面,将内电场引入二氧化钛纳米片,在确保大光学调制的同时缩短了响应时间,从而提高了着色效率。像差校正高角度环形暗场扫描透射电子显微镜(HAADF-STEM)显示,二氧化钛纳米片中存在大量非晶-晶体相界。开尔文探针力显微镜(KPFM)显示出强烈的表面电位分布,证明了内部电场的存在。密度泛函理论(DFT)计算证实,非晶-晶体异质界面可以产生内电场,降低锂离子的扩散障碍。因此,非晶-晶体二氧化钛纳米片的着色效率(35.1 cm2 C-1)优于纯非晶和晶体二氧化钛纳米片。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Analytical Chemistry
Analytical Chemistry 化学-分析化学
CiteScore
12.10
自引率
12.20%
发文量
1949
审稿时长
1.4 months
期刊介绍: Analytical Chemistry, a peer-reviewed research journal, focuses on disseminating new and original knowledge across all branches of analytical chemistry. Fundamental articles may explore general principles of chemical measurement science and need not directly address existing or potential analytical methodology. They can be entirely theoretical or report experimental results. Contributions may cover various phases of analytical operations, including sampling, bioanalysis, electrochemistry, mass spectrometry, microscale and nanoscale systems, environmental analysis, separations, spectroscopy, chemical reactions and selectivity, instrumentation, imaging, surface analysis, and data processing. Papers discussing known analytical methods should present a significant, original application of the method, a notable improvement, or results on an important analyte.
期刊最新文献
Conformational Dynamics of Hemoglobin in Solution and the Gas Phase Elucidated by Mass Spectrometry. Discovery of Acylated Glycine and Alanine by Integrating Chemical Derivatization-Based LC-MS/MS and Knowledge-Driven Prediction. Embracing Poisson Encapsulation Statistics for Improved Droplet Digital Immunoassay. Multiplexed Quantitative Screening of the Cellular Uptake of Proteins Delivered by Polymeric Nanocarriers. Online Aerosol pH Detection Using 3D-Printed Microfluidic Devices with a Novel Magnetic SERS Sensor.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1