Yunchai Li, Run Fang, Nangang Zhang, Chengsheng Liao, Xiaochang Chen, Xiaoyu Wang, Yunfei Luo, Leheng Li, Min Mao, Yunlong Zhang
{"title":"An improved algorithm for salient object detection of microscope based on U<sup>2</sup>-Net.","authors":"Yunchai Li, Run Fang, Nangang Zhang, Chengsheng Liao, Xiaochang Chen, Xiaoyu Wang, Yunfei Luo, Leheng Li, Min Mao, Yunlong Zhang","doi":"10.1007/s11517-024-03205-w","DOIUrl":null,"url":null,"abstract":"<p><p>With the rapid advancement of modern medical technology, microscopy imaging systems have become one of the key technologies in medical image analysis. However, manual use of microscopes presents issues such as operator dependency, inefficiency, and time consumption. To enhance the efficiency and accuracy of medical image capture and reduce the burden of subsequent quantitative analysis, this paper proposes an improved microscope salient object detection algorithm based on U<sup>2</sup>-Net, incorporating deep learning technology. The improved algorithm first enhances the network's key information extraction capability by incorporating the Convolutional Block Attention Module (CBAM) into U<sup>2</sup>-Net. It then optimizes network complexity by constructing a Simple Pyramid Pooling Module (SPPM) and uses Ghost convolution to achieve model lightweighting. Additionally, data augmentation is applied to the slides to improve the algorithm's robustness and generalization. The experimental results show that the size of the improved algorithm model is 72.5 MB, which represents a 56.85% reduction compared to the original U<sup>2</sup>-Net model size of 168.0 MB. Additionally, the model's prediction accuracy has increased from 92.24 to 97.13%, providing an efficient means for subsequent image processing and analysis tasks in microscopy imaging systems.</p>","PeriodicalId":49840,"journal":{"name":"Medical & Biological Engineering & Computing","volume":" ","pages":"383-397"},"PeriodicalIF":2.6000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical & Biological Engineering & Computing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11517-024-03205-w","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/26 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
With the rapid advancement of modern medical technology, microscopy imaging systems have become one of the key technologies in medical image analysis. However, manual use of microscopes presents issues such as operator dependency, inefficiency, and time consumption. To enhance the efficiency and accuracy of medical image capture and reduce the burden of subsequent quantitative analysis, this paper proposes an improved microscope salient object detection algorithm based on U2-Net, incorporating deep learning technology. The improved algorithm first enhances the network's key information extraction capability by incorporating the Convolutional Block Attention Module (CBAM) into U2-Net. It then optimizes network complexity by constructing a Simple Pyramid Pooling Module (SPPM) and uses Ghost convolution to achieve model lightweighting. Additionally, data augmentation is applied to the slides to improve the algorithm's robustness and generalization. The experimental results show that the size of the improved algorithm model is 72.5 MB, which represents a 56.85% reduction compared to the original U2-Net model size of 168.0 MB. Additionally, the model's prediction accuracy has increased from 92.24 to 97.13%, providing an efficient means for subsequent image processing and analysis tasks in microscopy imaging systems.
期刊介绍:
Founded in 1963, Medical & Biological Engineering & Computing (MBEC) continues to serve the biomedical engineering community, covering the entire spectrum of biomedical and clinical engineering. The journal presents exciting and vital experimental and theoretical developments in biomedical science and technology, and reports on advances in computer-based methodologies in these multidisciplinary subjects. The journal also incorporates new and evolving technologies including cellular engineering and molecular imaging.
MBEC publishes original research articles as well as reviews and technical notes. Its Rapid Communications category focuses on material of immediate value to the readership, while the Controversies section provides a forum to exchange views on selected issues, stimulating a vigorous and informed debate in this exciting and high profile field.
MBEC is an official journal of the International Federation of Medical and Biological Engineering (IFMBE).