Copy number amplification-induced overexpression of lncRNA LOC101927668 facilitates colorectal cancer progression by recruiting hnRNPD to disrupt RBM47/p53/p21 signaling.
Zaozao Wang, Haibo Han, Chenghai Zhang, Chenxin Wu, Jiabo Di, Pu Xing, Xiaowen Qiao, Kai Weng, Hao Hao, Xinying Yang, Yifan Hou, Beihai Jiang, Xiangqian Su
{"title":"Copy number amplification-induced overexpression of lncRNA LOC101927668 facilitates colorectal cancer progression by recruiting hnRNPD to disrupt RBM47/p53/p21 signaling.","authors":"Zaozao Wang, Haibo Han, Chenghai Zhang, Chenxin Wu, Jiabo Di, Pu Xing, Xiaowen Qiao, Kai Weng, Hao Hao, Xinying Yang, Yifan Hou, Beihai Jiang, Xiangqian Su","doi":"10.1186/s13046-024-03193-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Somatic copy number alterations (SCNAs) are pivotal in cancer progression and patient prognosis. Dysregulated long non-coding RNAs (lncRNAs), modulated by SCNAs, significantly impact tumorigenesis, including colorectal cancer (CRC). Nonetheless, the functional significance of lncRNAs induced by SCNAs in CRC remains largely unexplored.</p><p><strong>Methods: </strong>The dysregulated lncRNA LOC101927668, induced by copy number amplification, was identified through comprehensive bioinformatic analyses utilizing multidimensional data. Subsequent in situ hybridization was employed to ascertain the subcellular localization of LOC101927668, and gain- and loss-of-function experiments were conducted to elucidate its role in CRC progression. The downstream targets and signaling pathway influenced by LOC101927668 were identified and validated through a comprehensive approach, encompassing RNA sequencing, RT-qPCR, Western blot analysis, dual-luciferase reporter assay, evaluation of mRNA and protein degradation, and rescue experiments. Analysis of AU-rich elements (AREs) within the mRNA 3' untranslated region (UTR) of the downstream target, along with exploration of putative ARE-binding proteins, was conducted. RNA pull-down, mass spectrometry, RNA immunoprecipitation, and dual-luciferase reporter assays were employed to elucidate potential interacting proteins of LOC101927668 and further delineate the regulatory mechanism between LOC101927668 and its downstream target. Moreover, subcutaneous xenograft and orthotopic liver xenograft tumor models were utilized to evaluate the in vivo impact of LOC101927668 on CRC cells and investigate its correlation with downstream targets.</p><p><strong>Results: </strong>Significantly overexpressed LOC101927668, driven by chr7p22.3-p14.3 amplification, was markedly correlated with unfavorable clinical outcomes in our CRC patient cohort, as well as in TCGA and GEO datasets. Moreover, we demonstrated that enforced expression of LOC101927668 significantly enhanced cell proliferation, migration, and invasion, while its depletion impeded these processes in a p53-dependent manner. Mechanistically, nucleus-localized LOC101927668 recruited hnRNPD and translocated to the cytoplasm, accelerating the destabilization of RBM47 mRNA, a transcription factor of p53. As a nucleocytoplasmic shuttling protein, hnRNPD mediated RBM47 destabilization by binding to the ARE motif within RBM47 3'UTR, thereby suppressing the p53 signaling pathway and facilitating CRC progression.</p><p><strong>Conclusions: </strong>The overexpression of LOC101927668, driven by SCNAs, facilitates CRC proliferation and metastasis by recruiting hnRNPD, thus perturbing the RBM47/p53/p21 signaling pathway. These findings underscore the pivotal roles of LOC101927668 and highlight its therapeutic potential in anti-CRC interventions.</p>","PeriodicalId":50199,"journal":{"name":"Journal of Experimental & Clinical Cancer Research","volume":"43 1","pages":"274"},"PeriodicalIF":11.4000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11440719/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental & Clinical Cancer Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13046-024-03193-7","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Somatic copy number alterations (SCNAs) are pivotal in cancer progression and patient prognosis. Dysregulated long non-coding RNAs (lncRNAs), modulated by SCNAs, significantly impact tumorigenesis, including colorectal cancer (CRC). Nonetheless, the functional significance of lncRNAs induced by SCNAs in CRC remains largely unexplored.
Methods: The dysregulated lncRNA LOC101927668, induced by copy number amplification, was identified through comprehensive bioinformatic analyses utilizing multidimensional data. Subsequent in situ hybridization was employed to ascertain the subcellular localization of LOC101927668, and gain- and loss-of-function experiments were conducted to elucidate its role in CRC progression. The downstream targets and signaling pathway influenced by LOC101927668 were identified and validated through a comprehensive approach, encompassing RNA sequencing, RT-qPCR, Western blot analysis, dual-luciferase reporter assay, evaluation of mRNA and protein degradation, and rescue experiments. Analysis of AU-rich elements (AREs) within the mRNA 3' untranslated region (UTR) of the downstream target, along with exploration of putative ARE-binding proteins, was conducted. RNA pull-down, mass spectrometry, RNA immunoprecipitation, and dual-luciferase reporter assays were employed to elucidate potential interacting proteins of LOC101927668 and further delineate the regulatory mechanism between LOC101927668 and its downstream target. Moreover, subcutaneous xenograft and orthotopic liver xenograft tumor models were utilized to evaluate the in vivo impact of LOC101927668 on CRC cells and investigate its correlation with downstream targets.
Results: Significantly overexpressed LOC101927668, driven by chr7p22.3-p14.3 amplification, was markedly correlated with unfavorable clinical outcomes in our CRC patient cohort, as well as in TCGA and GEO datasets. Moreover, we demonstrated that enforced expression of LOC101927668 significantly enhanced cell proliferation, migration, and invasion, while its depletion impeded these processes in a p53-dependent manner. Mechanistically, nucleus-localized LOC101927668 recruited hnRNPD and translocated to the cytoplasm, accelerating the destabilization of RBM47 mRNA, a transcription factor of p53. As a nucleocytoplasmic shuttling protein, hnRNPD mediated RBM47 destabilization by binding to the ARE motif within RBM47 3'UTR, thereby suppressing the p53 signaling pathway and facilitating CRC progression.
Conclusions: The overexpression of LOC101927668, driven by SCNAs, facilitates CRC proliferation and metastasis by recruiting hnRNPD, thus perturbing the RBM47/p53/p21 signaling pathway. These findings underscore the pivotal roles of LOC101927668 and highlight its therapeutic potential in anti-CRC interventions.
期刊介绍:
The Journal of Experimental & Clinical Cancer Research is an esteemed peer-reviewed publication that focuses on cancer research, encompassing everything from fundamental discoveries to practical applications.
We welcome submissions that showcase groundbreaking advancements in the field of cancer research, especially those that bridge the gap between laboratory findings and clinical implementation. Our goal is to foster a deeper understanding of cancer, improve prevention and detection strategies, facilitate accurate diagnosis, and enhance treatment options.
We are particularly interested in manuscripts that shed light on the mechanisms behind the development and progression of cancer, including metastasis. Additionally, we encourage submissions that explore molecular alterations or biomarkers that can help predict the efficacy of different treatments or identify drug resistance. Translational research related to targeted therapies, personalized medicine, tumor immunotherapy, and innovative approaches applicable to clinical investigations are also of great interest to us.
We provide a platform for the dissemination of large-scale molecular characterizations of human tumors and encourage researchers to share their insights, discoveries, and methodologies with the wider scientific community.
By publishing high-quality research articles, reviews, and commentaries, the Journal of Experimental & Clinical Cancer Research strives to contribute to the continuous improvement of cancer care and make a meaningful impact on patients' lives.