Giorgio Fedele , Graham Hill , Amelia Sweetford , Suki Lee , Bobby Yau , Domenico R. Caputo , Denise Grovewood , Rowda Dahir , Paula Esquivias Ruiz-Dana , Anika Wisniewska , Anna Di Biase , Miles Gibson , Benita Percival , Stefan Grujic , Donald P. Fraser
{"title":"Development and validation of automated methods for COVID-19 PCR Master Mix preparation","authors":"Giorgio Fedele , Graham Hill , Amelia Sweetford , Suki Lee , Bobby Yau , Domenico R. Caputo , Denise Grovewood , Rowda Dahir , Paula Esquivias Ruiz-Dana , Anika Wisniewska , Anna Di Biase , Miles Gibson , Benita Percival , Stefan Grujic , Donald P. Fraser","doi":"10.1016/j.slast.2024.100195","DOIUrl":null,"url":null,"abstract":"<div><div>Polymerase chain reaction (PCR)-based assays were widely deployed during the SARS-CoV-2 pandemic for population-scale testing. High-throughput molecular diagnostic laboratories required a high degree of process automation to cope with huge testing demands, fast turnaround times, and quality requirements. However, process developers and optimizers often neglected the critical step of preparing a PCR Master Mix. The construction of PCR Master Mix depends on operator skill during the manual pipetting of reagents. Manual procedures introduce variation, inconsistency, wastage, and potentially risks data integrity. To address this, we developed a liquid-handler-based solution for automated, traceable, and compliant PCR Master Mix preparation. Here, we show that a fully automated PCR Master Mix protocol can replace manual pipetting, even in a diagnostic environment, without affecting accuracy or precision. Ultimately, this method eliminated operator-induced wastage and improved the consistency of the quality of results.</div></div>","PeriodicalId":54248,"journal":{"name":"SLAS Technology","volume":"29 5","pages":"Article 100195"},"PeriodicalIF":2.5000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SLAS Technology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2472630324000773","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Polymerase chain reaction (PCR)-based assays were widely deployed during the SARS-CoV-2 pandemic for population-scale testing. High-throughput molecular diagnostic laboratories required a high degree of process automation to cope with huge testing demands, fast turnaround times, and quality requirements. However, process developers and optimizers often neglected the critical step of preparing a PCR Master Mix. The construction of PCR Master Mix depends on operator skill during the manual pipetting of reagents. Manual procedures introduce variation, inconsistency, wastage, and potentially risks data integrity. To address this, we developed a liquid-handler-based solution for automated, traceable, and compliant PCR Master Mix preparation. Here, we show that a fully automated PCR Master Mix protocol can replace manual pipetting, even in a diagnostic environment, without affecting accuracy or precision. Ultimately, this method eliminated operator-induced wastage and improved the consistency of the quality of results.
期刊介绍:
SLAS Technology emphasizes scientific and technical advances that enable and improve life sciences research and development; drug-delivery; diagnostics; biomedical and molecular imaging; and personalized and precision medicine. This includes high-throughput and other laboratory automation technologies; micro/nanotechnologies; analytical, separation and quantitative techniques; synthetic chemistry and biology; informatics (data analysis, statistics, bio, genomic and chemoinformatics); and more.