Computational model of layer 2/3 in mouse primary visual cortex explains observed visuomotor mismatch response.

IF 1.5 4区 医学 Q3 MATHEMATICAL & COMPUTATIONAL BIOLOGY Journal of Computational Neuroscience Pub Date : 2024-09-28 DOI:10.1007/s10827-024-00882-2
Heiko Hoffmann
{"title":"Computational model of layer 2/3 in mouse primary visual cortex explains observed visuomotor mismatch response.","authors":"Heiko Hoffmann","doi":"10.1007/s10827-024-00882-2","DOIUrl":null,"url":null,"abstract":"<p><p>Activity in layer 2/3 of the mouse primary visual cortex has been shown to depend both on visual input and the mouse's locomotion. Moreover, this activity is altered by a mismatch between the observed visual flow and the predicted visual flow from locomotion. Here, I present a simple computational model that explains previously reported recordings from layer 2/3 neurons in mice. In my model, layer 2/3 encodes the velocity difference between the estimate from visual flow and the prediction from locomotion using a neural population code. Moreover, I describe a hypothesized mechanism for how the brain may carry out computations of variables encoded in population codes. This mechanism may point to a general principle for computing any mathematical function in the brain.</p>","PeriodicalId":54857,"journal":{"name":"Journal of Computational Neuroscience","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10827-024-00882-2","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Activity in layer 2/3 of the mouse primary visual cortex has been shown to depend both on visual input and the mouse's locomotion. Moreover, this activity is altered by a mismatch between the observed visual flow and the predicted visual flow from locomotion. Here, I present a simple computational model that explains previously reported recordings from layer 2/3 neurons in mice. In my model, layer 2/3 encodes the velocity difference between the estimate from visual flow and the prediction from locomotion using a neural population code. Moreover, I describe a hypothesized mechanism for how the brain may carry out computations of variables encoded in population codes. This mechanism may point to a general principle for computing any mathematical function in the brain.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
小鼠初级视觉皮层第 2/3 层的计算模型解释了观察到的视觉运动不匹配反应。
研究表明,小鼠初级视觉皮层第 2/3 层的活动取决于视觉输入和小鼠的运动。此外,观察到的视觉流与运动预测的视觉流之间的不匹配也会改变这种活动。在这里,我提出了一个简单的计算模型来解释之前报道的小鼠第 2/3 层神经元的记录。在我的模型中,第 2/3 层利用神经群体代码对视觉流估计值与运动预测值之间的速度差异进行编码。此外,我还描述了大脑如何对群体代码中编码的变量进行计算的假设机制。这一机制可能指向在大脑中计算任何数学函数的一般原理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.00
自引率
8.30%
发文量
32
审稿时长
3 months
期刊介绍: The Journal of Computational Neuroscience provides a forum for papers that fit the interface between computational and experimental work in the neurosciences. The Journal of Computational Neuroscience publishes full length original papers, rapid communications and review articles describing theoretical and experimental work relevant to computations in the brain and nervous system. Papers that combine theoretical and experimental work are especially encouraged. Primarily theoretical papers should deal with issues of obvious relevance to biological nervous systems. Experimental papers should have implications for the computational function of the nervous system, and may report results using any of a variety of approaches including anatomy, electrophysiology, biophysics, imaging, and molecular biology. Papers investigating the physiological mechanisms underlying pathologies of the nervous system, or papers that report novel technologies of interest to researchers in computational neuroscience, including advances in neural data analysis methods yielding insights into the function of the nervous system, are also welcomed (in this case, methodological papers should include an application of the new method, exemplifying the insights that it yields).It is anticipated that all levels of analysis from cognitive to cellular will be represented in the Journal of Computational Neuroscience.
期刊最新文献
A cortical field theory - dynamics and symmetries. Computational model of layer 2/3 in mouse primary visual cortex explains observed visuomotor mismatch response. Formation and retrieval of cell assemblies in a biologically realistic spiking neural network model of area CA3 in the mouse hippocampus A computational model of auditory chirp-velocity sensitivity and amplitude-modulation tuning in inferior colliculus neurons JCNS goes multiscale.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1