{"title":"How plasticity shapes the formation of neuronal assemblies driven by oscillatory and stochastic inputs.","authors":"Federico Devalle, Alex Roxin","doi":"10.1007/s10827-024-00885-z","DOIUrl":null,"url":null,"abstract":"<p><p>Synaptic connections in neuronal circuits are modulated by pre- and post-synaptic spiking activity. Previous theoretical work has studied how such Hebbian plasticity rules shape network connectivity when firing rates are constant, or slowly varying in time. However, oscillations and fluctuations, which can arise through sensory inputs or intrinsic brain mechanisms, are ubiquitous in neuronal circuits. Here we study how oscillatory and fluctuating inputs shape recurrent network connectivity given a temporally asymmetric plasticity rule. We do this analytically using a separation of time scales approach for pairs of neurons, and then show that the analysis can be extended to understand the structure in large networks. In the case of oscillatory inputs, the resulting network structure is strongly affected by the phase relationship between drive to different neurons. In large networks, distributed phases tend to lead to hierarchical clustering. The analysis for stochastic inputs reveals a rich phase plane in which there is multistability between different possible connectivity motifs. Our results may be of relevance for understanding the effect of sensory-driven inputs, which are by nature time-varying, on synaptic plasticity, and hence on learning and memory.</p>","PeriodicalId":54857,"journal":{"name":"Journal of Computational Neuroscience","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10827-024-00885-z","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Synaptic connections in neuronal circuits are modulated by pre- and post-synaptic spiking activity. Previous theoretical work has studied how such Hebbian plasticity rules shape network connectivity when firing rates are constant, or slowly varying in time. However, oscillations and fluctuations, which can arise through sensory inputs or intrinsic brain mechanisms, are ubiquitous in neuronal circuits. Here we study how oscillatory and fluctuating inputs shape recurrent network connectivity given a temporally asymmetric plasticity rule. We do this analytically using a separation of time scales approach for pairs of neurons, and then show that the analysis can be extended to understand the structure in large networks. In the case of oscillatory inputs, the resulting network structure is strongly affected by the phase relationship between drive to different neurons. In large networks, distributed phases tend to lead to hierarchical clustering. The analysis for stochastic inputs reveals a rich phase plane in which there is multistability between different possible connectivity motifs. Our results may be of relevance for understanding the effect of sensory-driven inputs, which are by nature time-varying, on synaptic plasticity, and hence on learning and memory.
期刊介绍:
The Journal of Computational Neuroscience provides a forum for papers that fit the interface between computational and experimental work in the neurosciences. The Journal of Computational Neuroscience publishes full length original papers, rapid communications and review articles describing theoretical and experimental work relevant to computations in the brain and nervous system. Papers that combine theoretical and experimental work are especially encouraged. Primarily theoretical papers should deal with issues of obvious relevance to biological nervous systems. Experimental papers should have implications for the computational function of the nervous system, and may report results using any of a variety of approaches including anatomy, electrophysiology, biophysics, imaging, and molecular biology. Papers investigating the physiological mechanisms underlying pathologies of the nervous system, or papers that report novel technologies of interest to researchers in computational neuroscience, including advances in neural data analysis methods yielding insights into the function of the nervous system, are also welcomed (in this case, methodological papers should include an application of the new method, exemplifying the insights that it yields).It is anticipated that all levels of analysis from cognitive to cellular will be represented in the Journal of Computational Neuroscience.