{"title":"A genome-wide CRISPR/Cas9 knockout screen identifies SEMA3F gene for resistance to cyclin-dependent kinase 4 and 6 inhibitors in breast cancer.","authors":"Yuko Kawai, Aiko Nagayama, Kazuhiro Miyao, Makoto Takeuchi, Takamichi Yokoe, Tomoe Kameyama, Xinyue Wang, Tomoko Seki, Maiko Takahashi, Tetsu Hayashida, Yuko Kitagawa","doi":"10.1007/s12282-024-01641-y","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Palbociclib is a cell-cycle targeted small molecule agent used as one of the standards of care in combination with endocrine therapy for patients with hormone receptor (HR)-positive, human epidermal growth factor receptor 2 (HER2)-negative advanced breast cancer. Although several gene alterations such as loss of Rb gene and amplification of p16 gene are known to be conventional resistance mechanisms to cyclin-dependent kinase 4 and 6 (CDK4/6) inhibitors, the comprehensive landscape of resistance is not yet fully elucidated. The purpose of this study is to identify the novel resistant genes to the CDK4/6 inhibitors in HR-positive HER2-negative breast cancer.</p><p><strong>Methods: </strong>The whole genome knockout screen using CRISPR/Cas9 genome editing was conducted in MCF7 to identify resistant genes to palbociclib. The candidate genes for resistance were selected by NGS analysis and GSEA analysis and validated by cell viability assay and mouse xenograft models.</p><p><strong>Results: </strong>We identified eight genes including RET, TIRAP, GNRH1, SEMA3F, SEMA5A, GATA4, NOD1, SSTR1 as candidate genes from the whole genome knockout screen. Among those, knockdown of SEMA3F by siRNA significantly and consistently increased the cell viability in the presence of CDK4/6 inhibitors in vitro and in vivo. Furthermore, the level of p-Rb was maintained in the palbociclib treated SEMA3F-downregulated cells, indicating that the resistance is driven by increased activity of cyclin kinases.</p><p><strong>Conclusion: </strong>Our observation provided the first evidence of SEMA3F as a regulator of sensitivity to CDK4/6 inhibitors in breast cancer. The detailed mechanisms of resistance deserve further functional studies to develop the better strategy to overcome resistance in CDK4/6 inhibitors.</p>","PeriodicalId":56083,"journal":{"name":"Breast Cancer","volume":null,"pages":null},"PeriodicalIF":4.0000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Breast Cancer","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12282-024-01641-y","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OBSTETRICS & GYNECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Palbociclib is a cell-cycle targeted small molecule agent used as one of the standards of care in combination with endocrine therapy for patients with hormone receptor (HR)-positive, human epidermal growth factor receptor 2 (HER2)-negative advanced breast cancer. Although several gene alterations such as loss of Rb gene and amplification of p16 gene are known to be conventional resistance mechanisms to cyclin-dependent kinase 4 and 6 (CDK4/6) inhibitors, the comprehensive landscape of resistance is not yet fully elucidated. The purpose of this study is to identify the novel resistant genes to the CDK4/6 inhibitors in HR-positive HER2-negative breast cancer.
Methods: The whole genome knockout screen using CRISPR/Cas9 genome editing was conducted in MCF7 to identify resistant genes to palbociclib. The candidate genes for resistance were selected by NGS analysis and GSEA analysis and validated by cell viability assay and mouse xenograft models.
Results: We identified eight genes including RET, TIRAP, GNRH1, SEMA3F, SEMA5A, GATA4, NOD1, SSTR1 as candidate genes from the whole genome knockout screen. Among those, knockdown of SEMA3F by siRNA significantly and consistently increased the cell viability in the presence of CDK4/6 inhibitors in vitro and in vivo. Furthermore, the level of p-Rb was maintained in the palbociclib treated SEMA3F-downregulated cells, indicating that the resistance is driven by increased activity of cyclin kinases.
Conclusion: Our observation provided the first evidence of SEMA3F as a regulator of sensitivity to CDK4/6 inhibitors in breast cancer. The detailed mechanisms of resistance deserve further functional studies to develop the better strategy to overcome resistance in CDK4/6 inhibitors.
期刊介绍:
Breast Cancer, the official journal of the Japanese Breast Cancer Society, publishes articles that contribute to progress in the field, in basic or translational research and also in clinical research, seeking to develop a new focus and new perspectives for all who are concerned with breast cancer. The journal welcomes all original articles describing clinical and epidemiological studies and laboratory investigations regarding breast cancer and related diseases. The journal will consider five types of articles: editorials, review articles, original articles, case reports, and rapid communications. Although editorials and review articles will principally be solicited by the editors, they can also be submitted for peer review, as in the case of original articles. The journal provides the best of up-to-date information on breast cancer, presenting readers with high-impact, original work focusing on pivotal issues.