{"title":"Development and Comparison of Time Series Models in Predicting Severe Fever with Thrombocytopenia Syndrome Cases - Hubei Province, China, 2013-2020.","authors":"Zixu Wang, Jinwei Zhang, Wenyi Zhang, Nianhong Lu, Qiong Chen, Junhu Wang, Yingqing Mao, Haiming Yi, Yixin Ge, Hongming Wang, Chao Chen, Wei Guo, Xin Qi, Yuexi Li, Ming Yue, Yong Qi","doi":"10.46234/ccdcw2024.200","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Severe fever with thrombocytopenia syndrome (SFTS) is an emerging infectious disease caused by the SFTS virus, which has a high mortality rate. Predicting the number of SFTS cases is essential for early outbreak warning and can offer valuable insights for establishing prevention and control measures.</p><p><strong>Methods: </strong>In this study, data on monthly SFTS cases in Hubei Province, China, from 2013 to 2020 were collected. Various time series models based on seasonal auto-regressive integrated moving average (SARIMA), Prophet, eXtreme Gradient Boosting (XGBoost), and long short-term memory (LSTM) were developed using these historical data to predict SFTS cases. The established models were evaluated and compared using mean absolute error (MAE) and root mean squared error (RMSE).</p><p><strong>Results: </strong>Four models were developed and performed well in predicting the trend of SFTS cases. The XGBoost model outperformed the others, yielding the closest fit to the actual case numbers and exhibiting the smallest MAE (2.54) and RMSE (2.89) in capturing the seasonal trend and predicting the monthly number of SFTS cases in Hubei Province.</p><p><strong>Conclusion: </strong>The developed XGBoost model represents a promising and valuable tool for SFTS prediction and early warning in Hubei Province, China.</p>","PeriodicalId":69039,"journal":{"name":"中国疾病预防控制中心周报","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11427339/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"中国疾病预防控制中心周报","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.46234/ccdcw2024.200","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: Severe fever with thrombocytopenia syndrome (SFTS) is an emerging infectious disease caused by the SFTS virus, which has a high mortality rate. Predicting the number of SFTS cases is essential for early outbreak warning and can offer valuable insights for establishing prevention and control measures.
Methods: In this study, data on monthly SFTS cases in Hubei Province, China, from 2013 to 2020 were collected. Various time series models based on seasonal auto-regressive integrated moving average (SARIMA), Prophet, eXtreme Gradient Boosting (XGBoost), and long short-term memory (LSTM) were developed using these historical data to predict SFTS cases. The established models were evaluated and compared using mean absolute error (MAE) and root mean squared error (RMSE).
Results: Four models were developed and performed well in predicting the trend of SFTS cases. The XGBoost model outperformed the others, yielding the closest fit to the actual case numbers and exhibiting the smallest MAE (2.54) and RMSE (2.89) in capturing the seasonal trend and predicting the monthly number of SFTS cases in Hubei Province.
Conclusion: The developed XGBoost model represents a promising and valuable tool for SFTS prediction and early warning in Hubei Province, China.