Development and Comparison of Time Series Models in Predicting Severe Fever with Thrombocytopenia Syndrome Cases - Hubei Province, China, 2013-2020.

IF 4.3 Q1 PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH 中国疾病预防控制中心周报 Pub Date : 2024-09-13 DOI:10.46234/ccdcw2024.200
Zixu Wang, Jinwei Zhang, Wenyi Zhang, Nianhong Lu, Qiong Chen, Junhu Wang, Yingqing Mao, Haiming Yi, Yixin Ge, Hongming Wang, Chao Chen, Wei Guo, Xin Qi, Yuexi Li, Ming Yue, Yong Qi
{"title":"Development and Comparison of Time Series Models in Predicting Severe Fever with Thrombocytopenia Syndrome Cases - Hubei Province, China, 2013-2020.","authors":"Zixu Wang, Jinwei Zhang, Wenyi Zhang, Nianhong Lu, Qiong Chen, Junhu Wang, Yingqing Mao, Haiming Yi, Yixin Ge, Hongming Wang, Chao Chen, Wei Guo, Xin Qi, Yuexi Li, Ming Yue, Yong Qi","doi":"10.46234/ccdcw2024.200","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Severe fever with thrombocytopenia syndrome (SFTS) is an emerging infectious disease caused by the SFTS virus, which has a high mortality rate. Predicting the number of SFTS cases is essential for early outbreak warning and can offer valuable insights for establishing prevention and control measures.</p><p><strong>Methods: </strong>In this study, data on monthly SFTS cases in Hubei Province, China, from 2013 to 2020 were collected. Various time series models based on seasonal auto-regressive integrated moving average (SARIMA), Prophet, eXtreme Gradient Boosting (XGBoost), and long short-term memory (LSTM) were developed using these historical data to predict SFTS cases. The established models were evaluated and compared using mean absolute error (MAE) and root mean squared error (RMSE).</p><p><strong>Results: </strong>Four models were developed and performed well in predicting the trend of SFTS cases. The XGBoost model outperformed the others, yielding the closest fit to the actual case numbers and exhibiting the smallest MAE (2.54) and RMSE (2.89) in capturing the seasonal trend and predicting the monthly number of SFTS cases in Hubei Province.</p><p><strong>Conclusion: </strong>The developed XGBoost model represents a promising and valuable tool for SFTS prediction and early warning in Hubei Province, China.</p>","PeriodicalId":69039,"journal":{"name":"中国疾病预防控制中心周报","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11427339/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"中国疾病预防控制中心周报","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.46234/ccdcw2024.200","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: Severe fever with thrombocytopenia syndrome (SFTS) is an emerging infectious disease caused by the SFTS virus, which has a high mortality rate. Predicting the number of SFTS cases is essential for early outbreak warning and can offer valuable insights for establishing prevention and control measures.

Methods: In this study, data on monthly SFTS cases in Hubei Province, China, from 2013 to 2020 were collected. Various time series models based on seasonal auto-regressive integrated moving average (SARIMA), Prophet, eXtreme Gradient Boosting (XGBoost), and long short-term memory (LSTM) were developed using these historical data to predict SFTS cases. The established models were evaluated and compared using mean absolute error (MAE) and root mean squared error (RMSE).

Results: Four models were developed and performed well in predicting the trend of SFTS cases. The XGBoost model outperformed the others, yielding the closest fit to the actual case numbers and exhibiting the smallest MAE (2.54) and RMSE (2.89) in capturing the seasonal trend and predicting the monthly number of SFTS cases in Hubei Province.

Conclusion: The developed XGBoost model represents a promising and valuable tool for SFTS prediction and early warning in Hubei Province, China.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
2013-2020 年中国湖北省重症发热伴血小板减少综合征病例预测时间序列模型的开发与比较》。
导言严重发热伴血小板减少综合征(SFTS)是一种由SFTS病毒引起的新发传染病,死亡率很高。预测严重发热伴血小板减少综合征病例数对于早期疫情预警至关重要,并可为制定预防和控制措施提供有价值的见解:本研究收集了中国湖北省 2013 年至 2020 年每月 SFTS 病例数据。方法:本研究收集了中国湖北省 2013 年至 2020 年每月 SFTS 病例数据,并利用这些历史数据开发了基于季节自回归整合移动平均(SARIMA)、先知(Prophet)、极梯度提升(XGBoost)和长短期记忆(LSTM)的各种时间序列模型,以预测 SFTS 病例。使用平均绝对误差(MAE)和均方根误差(RMSE)对已建立的模型进行了评估和比较:结果:建立的四个模型在预测 SFTS 病例趋势方面表现良好。XGBoost模型的表现优于其他模型,在捕捉季节性趋势和预测湖北省每月SFTS病例数方面,XGBoost模型最接近实际病例数,MAE(2.54)和RMSE(2.89)最小:所开发的 XGBoost 模型是用于中国湖北省自发性膀胱炎病例预测和预警的一种有前途、有价值的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.90
自引率
0.00%
发文量
0
期刊最新文献
Chronic Obstructive Pulmonary Disease-Associated Mortality - China, 2014-2021. Prevalence and Risk Factors for Chronic Obstructive Pulmonary Disease Among Adults Aged 50 and Above - 10 CKB Study Areas, China, 2020-2021. Rate and Change in Household Solid Fuels Usage Among Residents Aged 40 and Older - China, from 2014-2015 to 2019-2020. Reported Cases and Deaths of National Notifiable Infectious Diseases - China, August 2024. The Association Between Preserved Ratio Impaired Spirometry and Mortality - 10 CKB Study Areas, China, 2004-2022.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1