{"title":"The neurophysiology of sensorimotor prosthetic control.","authors":"Sherif M Elbasiouny","doi":"10.1186/s42490-024-00084-y","DOIUrl":null,"url":null,"abstract":"<p><p>Movement is a central behavior of daily living; thus lost or compromised movement due to disease, injury, or amputation causes enormous loss of productivity and quality of life. While prosthetics have evolved enormously over the years, restoring natural sensorimotor (SM) control via a prosthesis is a difficult problem which neuroengineering has yet to solve. With a focus on upper limb prosthetics, this perspective article discusses the neurophysiology of motor control under healthy conditions and after amputation, the development of upper limb prostheses from early generations to current state-of-the art sensorimotor neuroprostheses, and how postinjury changes could complicate prosthetic control. Current challenges and future development of smart sensorimotor neuroprostheses are also discussed.</p>","PeriodicalId":72425,"journal":{"name":"BMC biomedical engineering","volume":"6 1","pages":"9"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11443900/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC biomedical engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s42490-024-00084-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Movement is a central behavior of daily living; thus lost or compromised movement due to disease, injury, or amputation causes enormous loss of productivity and quality of life. While prosthetics have evolved enormously over the years, restoring natural sensorimotor (SM) control via a prosthesis is a difficult problem which neuroengineering has yet to solve. With a focus on upper limb prosthetics, this perspective article discusses the neurophysiology of motor control under healthy conditions and after amputation, the development of upper limb prostheses from early generations to current state-of-the art sensorimotor neuroprostheses, and how postinjury changes could complicate prosthetic control. Current challenges and future development of smart sensorimotor neuroprostheses are also discussed.