Unlocking the potential of large-scale 3D imaging with tissue clearing techniques.

Etsuo A Susaki
{"title":"Unlocking the potential of large-scale 3D imaging with tissue clearing techniques.","authors":"Etsuo A Susaki","doi":"10.1093/jmicro/dfae046","DOIUrl":null,"url":null,"abstract":"<p><p>The three-dimensional (3D) anatomical structure of living organisms is intrinsically linked to their functions, yet modern life sciences have not fully explored this aspect. Recently, the combination of efficient tissue clearing techniques and light-sheet fluorescence microscopy (LSFM) for rapid 3D imaging has improved access to 3D spatial information in biological systems. This technology has found applications in various fields, including neuroscience, cancer research, and clinical histopathology, leading to significant insights. It allows imaging of entire organs or even whole bodies of animals and humans at multiple scales. Moreover, it enables a form of spatial omics by capturing and analyzing cellome information, which represents the complete spatial organization of cells. While current 3D imaging of cleared tissues has limitations in obtaining sufficient molecular information, emerging technologies such as multi-round tissue staining and super-multicolor imaging are expected to address these constraints. 3D imaging using tissue clearing and light-sheet microscopy thus offers a valuable research tool in the current and future life sciences for acquiring and analyzing large-scale biological spatial information.</p>","PeriodicalId":74193,"journal":{"name":"Microscopy (Oxford, England)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microscopy (Oxford, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/jmicro/dfae046","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The three-dimensional (3D) anatomical structure of living organisms is intrinsically linked to their functions, yet modern life sciences have not fully explored this aspect. Recently, the combination of efficient tissue clearing techniques and light-sheet fluorescence microscopy (LSFM) for rapid 3D imaging has improved access to 3D spatial information in biological systems. This technology has found applications in various fields, including neuroscience, cancer research, and clinical histopathology, leading to significant insights. It allows imaging of entire organs or even whole bodies of animals and humans at multiple scales. Moreover, it enables a form of spatial omics by capturing and analyzing cellome information, which represents the complete spatial organization of cells. While current 3D imaging of cleared tissues has limitations in obtaining sufficient molecular information, emerging technologies such as multi-round tissue staining and super-multicolor imaging are expected to address these constraints. 3D imaging using tissue clearing and light-sheet microscopy thus offers a valuable research tool in the current and future life sciences for acquiring and analyzing large-scale biological spatial information.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用组织清除技术释放大规模三维成像的潜力。
生物体的三维(3D)解剖结构与生物体的功能有着内在联系,但现代生命科学尚未充分探索这一方面。最近,高效的组织清除技术与用于快速三维成像的光片荧光显微镜(LSFM)相结合,改善了生物系统中三维空间信息的获取。这项技术已在神经科学、癌症研究和临床组织病理学等多个领域得到应用,并产生了重要影响。它可以对动物和人类的整个器官甚至整个身体进行多尺度成像。此外,它还能通过捕捉和分析代表细胞完整空间组织的细胞组信息,实现一种空间全息成像。虽然目前的三维成像技术在获取足够的分子信息方面存在局限性,但多轮组织染色和超级多色成像等新兴技术有望解决这些制约因素。因此,利用组织清除和光片显微镜进行三维成像为当前和未来的生命科学研究提供了获取和分析大规模生物空间信息的宝贵工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Correction to: Low-dose measurement of electric potential distribution in organic light-emitting diode by phase-shifting electron holography with 3D tensor decomposition. Correction to: Structures of multisubunit membrane complexes with the CRYO ARM 200. Momentum-resolved EELS and CL study on 1D-plasmonic crystal prepared by FIB method. Bayesian inference of atomic column positions in scanning transmission electron microscopy images. Fast computational approach with prior dimension reduction for three-dimensional chemical component analysis using CT data of spectral imaging.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1