首页 > 最新文献

Microscopy (Oxford, England)最新文献

英文 中文
Correction to: Low-dose measurement of electric potential distribution in organic light-emitting diode by phase-shifting electron holography with 3D tensor decomposition.
Pub Date : 2024-12-28 DOI: 10.1093/jmicro/dfae058
{"title":"Correction to: Low-dose measurement of electric potential distribution in organic light-emitting diode by phase-shifting electron holography with 3D tensor decomposition.","authors":"","doi":"10.1093/jmicro/dfae058","DOIUrl":"https://doi.org/10.1093/jmicro/dfae058","url":null,"abstract":"","PeriodicalId":74193,"journal":{"name":"Microscopy (Oxford, England)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142900766","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction to: Structures of multisubunit membrane complexes with the CRYO ARM 200.
Pub Date : 2024-12-26 DOI: 10.1093/jmicro/dfae057
{"title":"Correction to: Structures of multisubunit membrane complexes with the CRYO ARM 200.","authors":"","doi":"10.1093/jmicro/dfae057","DOIUrl":"https://doi.org/10.1093/jmicro/dfae057","url":null,"abstract":"","PeriodicalId":74193,"journal":{"name":"Microscopy (Oxford, England)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142900771","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Momentum-resolved EELS and CL study on 1D-plasmonic crystal prepared by FIB method. 用 FIB 方法制备的一维等离子晶体的动量分辨 EELS 和 CL 研究。
Pub Date : 2024-12-05 DOI: 10.1093/jmicro/dfae022
Akira Yasuhara, Masateru Shibata, Wakaba Yamamoto, Izzah Machfuudzoh, Sotatsu Yanagimoto, Takumi Sannomiya

We investigate a one-dimensional plasmonic crystal using momentum-resolved electron energy-loss spectroscopy (EELS) and cathodoluminescence (CL) techniques, which are complementary in terms of available optical information. The plasmonic crystal sample is fabricated from large aluminum grains through the focused ion beam method. This approach allows curving nanostructures with high crystallinity, providing platforms for detailed analysis of plasmonic nanostructures using both EELS and CL. The momentum-resolved EELS visualizes dispersion curves outside the light cone, confirming the existence of the surface plasmon polaritons and local modes, while the momentum-resolved CL mapping analysis identified these surface plasmon polaritons and local modes. Such synergetic approach of two electron-beam techniques offers full insights into both radiative and non-radiative optical properties in plasmonic or photonic structures.

我们利用动量分辨电子能量损失光谱(EELS)和阴极发光(CL)技术研究了一种一维等离子晶体(1D PlC),这两种技术在可用光学信息方面具有互补性。PlC 样品是通过聚焦离子束 (FIB) 方法从大型铝晶粒中制造出来的。这种方法可实现具有高结晶度的弯曲纳米结构,为使用 EELS 和 CL 对等离子纳米结构进行详细分析提供了平台。动量分辨 EELS 可观察到光锥外的色散曲线,证实了表面等离子体极化子 (SPP) 和局部模式的存在,而动量分辨 CL 绘图分析则确定了这些 SPP 和局部模式。通过两种电子束技术的协同作用,可以全面了解等离子体或光子结构中的辐射和非辐射光学特性。
{"title":"Momentum-resolved EELS and CL study on 1D-plasmonic crystal prepared by FIB method.","authors":"Akira Yasuhara, Masateru Shibata, Wakaba Yamamoto, Izzah Machfuudzoh, Sotatsu Yanagimoto, Takumi Sannomiya","doi":"10.1093/jmicro/dfae022","DOIUrl":"10.1093/jmicro/dfae022","url":null,"abstract":"<p><p>We investigate a one-dimensional plasmonic crystal using momentum-resolved electron energy-loss spectroscopy (EELS) and cathodoluminescence (CL) techniques, which are complementary in terms of available optical information. The plasmonic crystal sample is fabricated from large aluminum grains through the focused ion beam method. This approach allows curving nanostructures with high crystallinity, providing platforms for detailed analysis of plasmonic nanostructures using both EELS and CL. The momentum-resolved EELS visualizes dispersion curves outside the light cone, confirming the existence of the surface plasmon polaritons and local modes, while the momentum-resolved CL mapping analysis identified these surface plasmon polaritons and local modes. Such synergetic approach of two electron-beam techniques offers full insights into both radiative and non-radiative optical properties in plasmonic or photonic structures.</p>","PeriodicalId":74193,"journal":{"name":"Microscopy (Oxford, England)","volume":" ","pages":"473-480"},"PeriodicalIF":0.0,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11630248/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140869168","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Role of lipids in the organization of tight junction. 脂质在紧密连接组织中的作用。
Pub Date : 2024-12-05 DOI: 10.1093/jmicro/dfae039
Junichi Ikenouchi, Kenta Shigetomi

Cell membrane structures are supramolecular complexes that require the ordered assembly of membrane proteins and lipids. The morphology of various cell adhesion structures in multicellular organisms, such as those between epithelial cells, neural synapses and immune synapses, was initially described through electron microscopic analyses. Subsequent studies aimed to catalog their constituent proteins, which encompass transmembrane cell adhesion molecules, cytoskeletal proteins and scaffolding proteins that bind the two components. However, the diversity of plasma membrane lipids and their significance in the organization of cell adhesion structures were underappreciated until recently. It is now understood that phase separation of lipids and liquid-liquid phase separation of proteins are important driving forces for such self-assembly. In this review, we summarized recent findings on the role of lipids as scaffolds for supramolecular complexes using tight junctions in epithelial cells as an example.

细胞膜结构是一种超分子复合体,需要膜蛋白和脂质的有序组装。多细胞生物体中各种细胞粘附结构的形态,如上皮细胞之间、神经突触和免疫突触之间的粘附结构,最初是通过电子显微镜分析来描述的。随后的研究旨在对它们的组成蛋白进行编目,其中包括跨膜细胞粘附分子、细胞骨架蛋白和结合这两种成分的支架蛋白。然而,直到最近,人们才意识到质膜脂质的多样性及其在细胞粘附结构组织中的重要性。现在人们了解到,脂质的相分离和蛋白质的液-液相分离是这种自组装的重要驱动力。在这篇综述中,我们以上皮细胞的紧密连接为例,总结了有关脂质作为超分子复合物支架的作用的最新发现。
{"title":"Role of lipids in the organization of tight junction.","authors":"Junichi Ikenouchi, Kenta Shigetomi","doi":"10.1093/jmicro/dfae039","DOIUrl":"10.1093/jmicro/dfae039","url":null,"abstract":"<p><p>Cell membrane structures are supramolecular complexes that require the ordered assembly of membrane proteins and lipids. The morphology of various cell adhesion structures in multicellular organisms, such as those between epithelial cells, neural synapses and immune synapses, was initially described through electron microscopic analyses. Subsequent studies aimed to catalog their constituent proteins, which encompass transmembrane cell adhesion molecules, cytoskeletal proteins and scaffolding proteins that bind the two components. However, the diversity of plasma membrane lipids and their significance in the organization of cell adhesion structures were underappreciated until recently. It is now understood that phase separation of lipids and liquid-liquid phase separation of proteins are important driving forces for such self-assembly. In this review, we summarized recent findings on the role of lipids as scaffolds for supramolecular complexes using tight junctions in epithelial cells as an example.</p>","PeriodicalId":74193,"journal":{"name":"Microscopy (Oxford, England)","volume":" ","pages":"457-462"},"PeriodicalIF":0.0,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142057513","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Visualization of Bacillus subtilis spore structure and germination using quick-freeze deep-etch electron microscopy. 利用速冻深描电子显微镜观察枯草芽孢杆菌孢子的结构和萌发。
Pub Date : 2024-12-05 DOI: 10.1093/jmicro/dfae023
Kiran Jalil, Yuhei O Tahara, Makoto Miyata

Bacterial spores, known for their complex and resilient structures, have been the focus of visualization using various methodologies. In this study, we applied quick-freeze and replica electron microscopy techniques, allowing observation of Bacillus subtilis spores in high-contrast and three-dimensional detail. This method facilitated visualization of the spore structure with enhanced resolution and provided new insights into the spores and their germination processes. We identified and described five distinct structures: (i) hair-like structures on the spore surface, (ii) spike formation on the surface of lysozyme-treated spores, (iii) the fractured appearance of the spore cortex during germination, (iv) potential connections between small vesicles and the core membrane and (v) the evolving surface structure of nascent vegetative cells during germination.

细菌孢子以其复杂而富有弹性的结构而闻名,一直是使用各种方法进行可视化研究的重点。在这项研究中,我们应用了速冻和复制电子显微镜技术,从而观察到了枯草杆菌孢子的高对比度和三维细节。这种方法提高了孢子结构的可视化分辨率,为我们了解孢子及其萌发过程提供了新的视角。我们确定并描述了五种不同的结构:(i) 孢子表面的毛发状结构;(ii) 溶菌酶处理过的孢子表面形成的穗状结构;(iii) 孢子皮层在萌发过程中的断裂外观;(iv) 小囊泡与核心膜之间的潜在连接;(v) 新生无性细胞在萌发过程中不断演变的表面结构。
{"title":"Visualization of Bacillus subtilis spore structure and germination using quick-freeze deep-etch electron microscopy.","authors":"Kiran Jalil, Yuhei O Tahara, Makoto Miyata","doi":"10.1093/jmicro/dfae023","DOIUrl":"10.1093/jmicro/dfae023","url":null,"abstract":"<p><p>Bacterial spores, known for their complex and resilient structures, have been the focus of visualization using various methodologies. In this study, we applied quick-freeze and replica electron microscopy techniques, allowing observation of Bacillus subtilis spores in high-contrast and three-dimensional detail. This method facilitated visualization of the spore structure with enhanced resolution and provided new insights into the spores and their germination processes. We identified and described five distinct structures: (i) hair-like structures on the spore surface, (ii) spike formation on the surface of lysozyme-treated spores, (iii) the fractured appearance of the spore cortex during germination, (iv) potential connections between small vesicles and the core membrane and (v) the evolving surface structure of nascent vegetative cells during germination.</p>","PeriodicalId":74193,"journal":{"name":"Microscopy (Oxford, England)","volume":" ","pages":"463-472"},"PeriodicalIF":0.0,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11630275/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141180766","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction to: Observation and quantitative analysis of dislocations in steel using electron channeling contrast imaging method with precise control of electron beam incident direction. 更正为利用精确控制电子束入射方向的电子通道对比成像方法观测和定量分析钢中的位错。
Pub Date : 2024-12-05 DOI: 10.1093/jmicro/dfae037
{"title":"Correction to: Observation and quantitative analysis of dislocations in steel using electron channeling contrast imaging method with precise control of electron beam incident direction.","authors":"","doi":"10.1093/jmicro/dfae037","DOIUrl":"10.1093/jmicro/dfae037","url":null,"abstract":"","PeriodicalId":74193,"journal":{"name":"Microscopy (Oxford, England)","volume":" ","pages":"523"},"PeriodicalIF":0.0,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11630296/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142047619","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bayesian inference of atomic column positions in scanning transmission electron microscopy images. 扫描透射电子显微镜图像中原子柱位置的贝叶斯推断。
Pub Date : 2024-12-05 DOI: 10.1093/jmicro/dfae025
Yuki Nomura, Satoshi Anada, Shunsuke Kobayashi

Atomic-resolution scanning transmission electron microscopy combined with two-dimensional Gaussian fitting enables the accurate and precise identification of atomic column positions within a few picometers. The measurement performance significantly depends on the signal-to-noise ratio of the atomic columns. In areas with low signal-to-noise ratios, such as near surfaces, the measurement performance was lower than that of the bulk. However, previous studies evaluated the accuracy and precision only in bulk areas, underscoring the need for a method that quantitatively evaluates the accuracy and precision of each atomic column position with various signal-to-noise ratios. This study introduced Bayesian inference to assess the accuracy and precision of determining individual atomic column positions under various signals. We applied this method to simulated and experimental images and demonstrated its effectiveness in identifying statistically significant displacements, particularly near surfaces with signal degradation. The use of vector maps and kernel density estimate plots obtained from Bayesian inference provided a probabilistic understanding of the atom displacement. Therefore, this study highlighted the potential benefits of Bayesian inference in high-resolution imaging to reveal material properties.

原子分辨扫描透射电子显微镜与二维高斯拟合相结合,能够准确无误地识别几皮米范围内的原子柱位置。测量性能在很大程度上取决于原子柱的信噪比。在信噪比较低的区域,如靠近表面的区域,测量性能要低于整体。然而,以往的研究只评估了大体区域的准确度和精确度,这就强调了需要一种方法来定量评估不同信噪比下每个原子柱位置的准确度和精确度。本研究引入了贝叶斯推理方法,以评估在各种信号下确定单个原子柱位置的准确度和精确度。我们将这种方法应用于模拟和实验图像,并证明了它在识别统计意义上的显著位移方面的有效性,尤其是在信号衰减的表面附近。使用贝叶斯推理得到的矢量图和核密度估计图,可以从概率上理解原子位移。因此,这项研究凸显了贝叶斯推理在高分辨率成像中揭示材料特性的潜在优势。
{"title":"Bayesian inference of atomic column positions in scanning transmission electron microscopy images.","authors":"Yuki Nomura, Satoshi Anada, Shunsuke Kobayashi","doi":"10.1093/jmicro/dfae025","DOIUrl":"10.1093/jmicro/dfae025","url":null,"abstract":"<p><p>Atomic-resolution scanning transmission electron microscopy combined with two-dimensional Gaussian fitting enables the accurate and precise identification of atomic column positions within a few picometers. The measurement performance significantly depends on the signal-to-noise ratio of the atomic columns. In areas with low signal-to-noise ratios, such as near surfaces, the measurement performance was lower than that of the bulk. However, previous studies evaluated the accuracy and precision only in bulk areas, underscoring the need for a method that quantitatively evaluates the accuracy and precision of each atomic column position with various signal-to-noise ratios. This study introduced Bayesian inference to assess the accuracy and precision of determining individual atomic column positions under various signals. We applied this method to simulated and experimental images and demonstrated its effectiveness in identifying statistically significant displacements, particularly near surfaces with signal degradation. The use of vector maps and kernel density estimate plots obtained from Bayesian inference provided a probabilistic understanding of the atom displacement. Therefore, this study highlighted the potential benefits of Bayesian inference in high-resolution imaging to reveal material properties.</p>","PeriodicalId":74193,"journal":{"name":"Microscopy (Oxford, England)","volume":" ","pages":"481-487"},"PeriodicalIF":0.0,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140900800","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development of silicon-on-insulator direct electron detector with analog memories in pixels for sub-microsecond imaging. 开发用于亚微秒成像的带像素模拟存储器的硅绝缘体直接电子探测器。
Pub Date : 2024-12-05 DOI: 10.1093/jmicro/dfae029
Takafumi Ishida, Kosei Sugie, Toshinobu Miyoshi, Yuichi Ishida, Koh Saitoh, Yasuo Arai, Makoto Kuwahara

We have developed a high-speed recordable direct electron detector based on silicon-on-insulator technology. The detector has 16 analog memories in each pixel to record 16 images with sub-microsecond temporal resolution. A dedicated data acquisition system has also been developed to display and record the results on a personal computer. The performance of the direct electron detector as an image sensor is evaluated under electron irradiation with an energy of 30 keV in a low-voltage transmission electron microscope equipped with a photocathode electron gun. We demonstrate that the detector can record images at an exposure time of 100 ns and an interval of 900 ns.

我们开发了一种基于硅绝缘体技术的高速可记录直接电子探测器。该探测器的每个像素都有十六个模拟存储器,可记录十六个具有亚微秒时间分辨率的图像。此外,还开发了一个专用数据采集系统,用于在个人电脑上显示和记录结果。在配备了光电阴极电子枪的低压透射电子显微镜中,在能量为 30 keV 的电子辐照下,对直接电子探测器作为图像传感器的性能进行了评估。结果表明,该探测器可以在 100 ns 的曝光时间和 900 ns 的间隔时间内记录图像。
{"title":"Development of silicon-on-insulator direct electron detector with analog memories in pixels for sub-microsecond imaging.","authors":"Takafumi Ishida, Kosei Sugie, Toshinobu Miyoshi, Yuichi Ishida, Koh Saitoh, Yasuo Arai, Makoto Kuwahara","doi":"10.1093/jmicro/dfae029","DOIUrl":"10.1093/jmicro/dfae029","url":null,"abstract":"<p><p>We have developed a high-speed recordable direct electron detector based on silicon-on-insulator technology. The detector has 16 analog memories in each pixel to record 16 images with sub-microsecond temporal resolution. A dedicated data acquisition system has also been developed to display and record the results on a personal computer. The performance of the direct electron detector as an image sensor is evaluated under electron irradiation with an energy of 30 keV in a low-voltage transmission electron microscope equipped with a photocathode electron gun. We demonstrate that the detector can record images at an exposure time of 100 ns and an interval of 900 ns.</p>","PeriodicalId":74193,"journal":{"name":"Microscopy (Oxford, England)","volume":" ","pages":"511-516"},"PeriodicalIF":0.0,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11630314/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141187161","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sandwich freezing and freeze substitution of Arabidopsis plant tissues for electron microscopy. 拟南芥植物组织的夹心冷冻和冷冻替代,用于电子显微镜观察。
Pub Date : 2024-12-05 DOI: 10.1093/jmicro/dfae032
Masashi Yamaguchi, Mayuko Sato, Azusa Takahashi-Nakaguchi, Michiyo Okamoto, Kiminori Toyooka, Hiroji Chibana

Sandwich freezing is a method of rapid freezing by sandwiching specimens between two copper disks, and it has been used for observing exquisite close-to-native ultrastructure of living yeast and bacteria. Recently, this method has been found to be useful for preserving cell images of glutaraldehyde-fixed cultured cells, as well as animal and human tissues. In the present study, this method was applied to observe the fine structure of living Arabidopsis plant tissues and was found to achieve excellent ultrastructural preservation of cells and tissues. This is the first report of applying the sandwich freezing method to observe plant tissues.

夹层冷冻是一种将标本夹在两个铜盘之间进行快速冷冻的方法,已被用于观察活酵母和细菌的近原生超微结构。最近,人们发现这种方法可用于保存戊二醛固定的培养细胞以及动物和人体组织的细胞图像。在本研究中,这种方法被用于观察拟南芥活体植物组织的精细结构,并发现它能很好地保存细胞和组织的超微结构。这是首次应用三明治冷冻法观察植物组织的报道。
{"title":"Sandwich freezing and freeze substitution of Arabidopsis plant tissues for electron microscopy.","authors":"Masashi Yamaguchi, Mayuko Sato, Azusa Takahashi-Nakaguchi, Michiyo Okamoto, Kiminori Toyooka, Hiroji Chibana","doi":"10.1093/jmicro/dfae032","DOIUrl":"10.1093/jmicro/dfae032","url":null,"abstract":"<p><p>Sandwich freezing is a method of rapid freezing by sandwiching specimens between two copper disks, and it has been used for observing exquisite close-to-native ultrastructure of living yeast and bacteria. Recently, this method has been found to be useful for preserving cell images of glutaraldehyde-fixed cultured cells, as well as animal and human tissues. In the present study, this method was applied to observe the fine structure of living Arabidopsis plant tissues and was found to achieve excellent ultrastructural preservation of cells and tissues. This is the first report of applying the sandwich freezing method to observe plant tissues.</p>","PeriodicalId":74193,"journal":{"name":"Microscopy (Oxford, England)","volume":" ","pages":"517-522"},"PeriodicalIF":0.0,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141728400","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fast computational approach with prior dimension reduction for three-dimensional chemical component analysis using CT data of spectral imaging. 利用光谱成像 CT 数据进行三维化学成分分析的先验降维快速计算方法。
Pub Date : 2024-12-05 DOI: 10.1093/jmicro/dfae027
Motoki Shiga, Taisuke Ono, Kenichi Morishita, Keiji Kuno, Nanase Moriguchi

Spectral image (SI) measurement techniques, such as X-ray absorption fine structure (XAFS) imaging and scanning transmission electron microscopy (STEM) with energy-dispersive X-ray spectroscopy (EDS) or electron energy loss spectroscopy (EELS), are useful for identifying chemical structures in composite materials. Machine-learning techniques have been developed for automatic analysis of SI data and their usefulness has been proven. Recently, an extended measurement technique combining SI with a computed tomography (CT) technique (CT-SI), such as CT-XAFS and STEM-EDS/EELS tomography, was developed to identify the three-dimensional (3D) structures of chemical components. CT-SI analysis can be conducted by combining CT reconstruction algorithms and chemical component analysis based on machine-learning techniques. However, this analysis incurs high-computational costs owing to the size of the CT-SI datasets. To address this problem, this study proposed a fast computational approach for 3D chemical component analysis in an unsupervised learning setting. The primary idea for reducing the computational cost involved compressing the CT-SI data prior to CT computation and performing 3D reconstruction and chemical component analysis on the compressed data. The proposed approach significantly reduced the computational cost without losing information about the 3D structure and chemical components. We experimentally evaluated the proposed approach using synthetic and real CT-XAFS data, which demonstrated that our approach achieved a significantly faster computational speed than the conventional approach while maintaining analysis performance. As the proposed procedure can be implemented with any CT algorithm, it is expected to accelerate 3D analyses with sparse regularized CT algorithms in noisy and sparse CT-SI datasets.

光谱图像(SI)测量技术,如 X 射线吸收精细结构(XAFS)成像和扫描透射电子显微镜(STEM)与能量色散 X 射线光谱(EDS)或电子能量损失光谱(EELS),对于确定复合材料中的化学结构非常有用。目前已开发出用于自动分析 SI 数据的机器学习技术,其实用性已得到证实。最近,一种将 SI 与计算机断层扫描(CT)技术(CT-SI)(如 CT-XAFS 和 STEM-EDS/EELS 断层扫描)相结合的扩展测量技术被开发出来,用于识别化学成分的三维(3D)结构。CT-SI 分析可通过结合 CT 重建算法和基于机器学习技术的化学成分分析来进行。然而,由于 CT-SI 数据集的大小,这种分析会产生很高的计算成本。为解决这一问题,本研究提出了一种在无监督学习环境下进行三维化学成分分析的快速计算方法。降低计算成本的主要思路是在 CT 计算之前压缩 CT-SI 数据,并在压缩数据上执行三维重建和化学成分分析。所提出的方法在不丢失三维结构和化学成分信息的情况下大大降低了计算成本。我们使用合成和真实的 CT-XAFS 数据对提出的方法进行了实验评估,结果表明我们的方法在保持分析性能的同时,计算速度明显快于传统方法。由于所提出的程序可以用任何 CT 算法来实现,因此有望在有噪声和稀疏的 CT-SI 数据集中加速稀疏正则化 CT 算法的三维分析。
{"title":"Fast computational approach with prior dimension reduction for three-dimensional chemical component analysis using CT data of spectral imaging.","authors":"Motoki Shiga, Taisuke Ono, Kenichi Morishita, Keiji Kuno, Nanase Moriguchi","doi":"10.1093/jmicro/dfae027","DOIUrl":"10.1093/jmicro/dfae027","url":null,"abstract":"<p><p>Spectral image (SI) measurement techniques, such as X-ray absorption fine structure (XAFS) imaging and scanning transmission electron microscopy (STEM) with energy-dispersive X-ray spectroscopy (EDS) or electron energy loss spectroscopy (EELS), are useful for identifying chemical structures in composite materials. Machine-learning techniques have been developed for automatic analysis of SI data and their usefulness has been proven. Recently, an extended measurement technique combining SI with a computed tomography (CT) technique (CT-SI), such as CT-XAFS and STEM-EDS/EELS tomography, was developed to identify the three-dimensional (3D) structures of chemical components. CT-SI analysis can be conducted by combining CT reconstruction algorithms and chemical component analysis based on machine-learning techniques. However, this analysis incurs high-computational costs owing to the size of the CT-SI datasets. To address this problem, this study proposed a fast computational approach for 3D chemical component analysis in an unsupervised learning setting. The primary idea for reducing the computational cost involved compressing the CT-SI data prior to CT computation and performing 3D reconstruction and chemical component analysis on the compressed data. The proposed approach significantly reduced the computational cost without losing information about the 3D structure and chemical components. We experimentally evaluated the proposed approach using synthetic and real CT-XAFS data, which demonstrated that our approach achieved a significantly faster computational speed than the conventional approach while maintaining analysis performance. As the proposed procedure can be implemented with any CT algorithm, it is expected to accelerate 3D analyses with sparse regularized CT algorithms in noisy and sparse CT-SI datasets.</p>","PeriodicalId":74193,"journal":{"name":"Microscopy (Oxford, England)","volume":" ","pages":"488-498"},"PeriodicalIF":0.0,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140961075","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Microscopy (Oxford, England)
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1