首页 > 最新文献

Microscopy (Oxford, England)最新文献

英文 中文
Derivation Method of the Dielectric Function of Amorphous Materials Using Angle-Resolved Electron Energy-Loss Spectroscopy for Exciton-Size Evaluation.
Pub Date : 2025-02-04 DOI: 10.1093/jmicro/dfae056
Tomoya Saito, Yohei K Sato, Masami Terauchi

Accurately deriving the momentum-transfer dependence of the dielectric function ε(q, ω) using angle-resolved electron energy-loss spectroscopy (AR-EELS) is necessary for evaluating the average electron-hole distance, i.e., the exciton size, in materials. Achieving accurate exciton-size evaluations will promote the comprehension of optical functionality in materials such as photocatalysts. However, for amorphous materials, it is difficult to accurately derive ε(q, ω) because the elastic scattering intensity originating from the amorphous structure and the inelastic scattering intensity associated with the elastic scattering overlap in the EELS spectrum. In this study, a method to remove these overlapping intensities from the EELS spectrum is proposed to accurately derive the ε(q, ω) of an amorphous material. Amorphous SiO2 (am-SiO2) was subjected to AR-EELS measurements, and ε(q, ω) of am-SiO2 was derived after removing the intensity due to the amorphous structure using the proposed method. Thereafter, the exciton absorption intensity and the exciton size were evaluated. Applying the proposed method, the exciton absorption intensity was considerably suppressed in the q-region after 1.0 Å-1, where the elastic and inelastic scattering intensities originating from the amorphous structure are dominant. The exciton size evaluated was 2 nm (1 nm), consistent with the theoretically predicted size of ~1 nm. Therefore, the proposed method is effective for deriving accurate ε(q, ω), facilitating exciton-size evaluation for amorphous materials using AR-EELS.

{"title":"Derivation Method of the Dielectric Function of Amorphous Materials Using Angle-Resolved Electron Energy-Loss Spectroscopy for Exciton-Size Evaluation.","authors":"Tomoya Saito, Yohei K Sato, Masami Terauchi","doi":"10.1093/jmicro/dfae056","DOIUrl":"https://doi.org/10.1093/jmicro/dfae056","url":null,"abstract":"<p><p>Accurately deriving the momentum-transfer dependence of the dielectric function ε(q, ω) using angle-resolved electron energy-loss spectroscopy (AR-EELS) is necessary for evaluating the average electron-hole distance, i.e., the exciton size, in materials. Achieving accurate exciton-size evaluations will promote the comprehension of optical functionality in materials such as photocatalysts. However, for amorphous materials, it is difficult to accurately derive ε(q, ω) because the elastic scattering intensity originating from the amorphous structure and the inelastic scattering intensity associated with the elastic scattering overlap in the EELS spectrum. In this study, a method to remove these overlapping intensities from the EELS spectrum is proposed to accurately derive the ε(q, ω) of an amorphous material. Amorphous SiO2 (am-SiO2) was subjected to AR-EELS measurements, and ε(q, ω) of am-SiO2 was derived after removing the intensity due to the amorphous structure using the proposed method. Thereafter, the exciton absorption intensity and the exciton size were evaluated. Applying the proposed method, the exciton absorption intensity was considerably suppressed in the q-region after 1.0 Å-1, where the elastic and inelastic scattering intensities originating from the amorphous structure are dominant. The exciton size evaluated was 2 nm (1 nm), consistent with the theoretically predicted size of ~1 nm. Therefore, the proposed method is effective for deriving accurate ε(q, ω), facilitating exciton-size evaluation for amorphous materials using AR-EELS.</p>","PeriodicalId":74193,"journal":{"name":"Microscopy (Oxford, England)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143191528","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Disodium hydrogen phosphate facilitates the gold enhancement reaction of nanogold in the pre-embedding immunoelectron microscopy.
Pub Date : 2025-01-31 DOI: 10.1093/jmicro/dfaf009
Kana Okuma, Junji Yamaguchi, Soichiro Kakuta, Koichiro Ichimura

Immunoelectron microscopy is a technique for analyzing molecular localization at the ultrastructural level. In the pre-embedding immunoelectron microscopy, samples are immunolabeled with extremely small gold particles. Gold enhancement then enlarges the gold particles to an easily visible size. During the examination of the optimal conditions, we found that phosphate buffer accelerates the enhancement reaction. Furthermore, disodium hydrogen phosphate was identified as responsible for this effect. Disodium hydrogen phosphate enabled the gold labeling of deep regions within thick tissue samples. In conclusion, our method is useful for increasing the sensitivity, especially in the deeper region of the sample.

{"title":"Disodium hydrogen phosphate facilitates the gold enhancement reaction of nanogold in the pre-embedding immunoelectron microscopy.","authors":"Kana Okuma, Junji Yamaguchi, Soichiro Kakuta, Koichiro Ichimura","doi":"10.1093/jmicro/dfaf009","DOIUrl":"https://doi.org/10.1093/jmicro/dfaf009","url":null,"abstract":"<p><p>Immunoelectron microscopy is a technique for analyzing molecular localization at the ultrastructural level. In the pre-embedding immunoelectron microscopy, samples are immunolabeled with extremely small gold particles. Gold enhancement then enlarges the gold particles to an easily visible size. During the examination of the optimal conditions, we found that phosphate buffer accelerates the enhancement reaction. Furthermore, disodium hydrogen phosphate was identified as responsible for this effect. Disodium hydrogen phosphate enabled the gold labeling of deep regions within thick tissue samples. In conclusion, our method is useful for increasing the sensitivity, especially in the deeper region of the sample.</p>","PeriodicalId":74193,"journal":{"name":"Microscopy (Oxford, England)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143070100","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Experimental investigation and simulation of SEM image intensity behaviors for developing thickness-controlled S/TEM lamella preparation via FIB-SEM.
Pub Date : 2025-01-31 DOI: 10.1093/jmicro/dfaf006
Jun Uzuhashi, Yuanzhao Yao, Tadakatsu Ohkubo, Takashi Sekiguchi

High-quality thin lamellae are essential for state-of-the-art scanning transmission electron microscopy (S/TEM) analyses. While the preparation of S/TEM lamellae using focused ion beam (FIB-) scanning electron microscopy (SEM) has been established since the early 21st century, two critical factors have only recently been addressed: precise control over lamella thickness and a systematic understanding of FIB-induced damage. This study conducts an experimental investigation and simulation to explore how the intensities of backscattered and secondary electrons (BSEs and SEs, respectively) depend on lamellae thickness for semiconductor (Si), insulator (Al2O3), and metallic (stainless-steel) materials. The BSE intensity shows a simple linear relationship with the lamella thickness for all materials below a certain thickness, whereas the relationship between the SE intensity and thickness is more complex. In conclusion, the BSE intensity is a reliable indicator for accurately determining lamella thickness across various materials during FIB thinning processing, while the SE intensity lacks consistency due to material and detector variability. This insight enables the integration of real-time thickness control into S/TEM lamella preparation, significantly enhancing lamella quality and reproducibility. These findings pave the way for more efficient, automated processes in high-quality S/TEM analysis, making the preparation method more reliable for a range of applications.

{"title":"Experimental investigation and simulation of SEM image intensity behaviors for developing thickness-controlled S/TEM lamella preparation via FIB-SEM.","authors":"Jun Uzuhashi, Yuanzhao Yao, Tadakatsu Ohkubo, Takashi Sekiguchi","doi":"10.1093/jmicro/dfaf006","DOIUrl":"https://doi.org/10.1093/jmicro/dfaf006","url":null,"abstract":"<p><p>High-quality thin lamellae are essential for state-of-the-art scanning transmission electron microscopy (S/TEM) analyses. While the preparation of S/TEM lamellae using focused ion beam (FIB-) scanning electron microscopy (SEM) has been established since the early 21st century, two critical factors have only recently been addressed: precise control over lamella thickness and a systematic understanding of FIB-induced damage. This study conducts an experimental investigation and simulation to explore how the intensities of backscattered and secondary electrons (BSEs and SEs, respectively) depend on lamellae thickness for semiconductor (Si), insulator (Al2O3), and metallic (stainless-steel) materials. The BSE intensity shows a simple linear relationship with the lamella thickness for all materials below a certain thickness, whereas the relationship between the SE intensity and thickness is more complex. In conclusion, the BSE intensity is a reliable indicator for accurately determining lamella thickness across various materials during FIB thinning processing, while the SE intensity lacks consistency due to material and detector variability. This insight enables the integration of real-time thickness control into S/TEM lamella preparation, significantly enhancing lamella quality and reproducibility. These findings pave the way for more efficient, automated processes in high-quality S/TEM analysis, making the preparation method more reliable for a range of applications.</p>","PeriodicalId":74193,"journal":{"name":"Microscopy (Oxford, England)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143070101","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Magnification calibration of X-ray 3D microscopy using micro-line structures. 利用微线结构校准 X 射线三维显微镜的放大倍率。
Pub Date : 2025-01-30 DOI: 10.1093/jmicro/dfae045
Yasushi Azuma, Kazuhiro Kumagai, Naoki Kunishima, Koichiro Ito

X-ray microscopy using computed tomography is an excellent 3D imaging instrument. Three-dimensional X-ray microscopy (3DXRM) is a nondestructive imaging technique used to inspect internal and external structures in units of submicrometers or less. The 3DXRM, although attractive, is mostly used as an observation instrument and is limited as a measurement system in quantitative evaluation and quality control. Calibration is required for use in measurement systems such as coordinate measurement systems, and specific standard samples and evaluation procedures are needed. The certified values of the standard samples must ideally be traceable to the International System of Units (SI). In the 3DXRM measurement system, line structures (LSs) are fabricated as prototype standard samples to conduct magnification calibration. In this study, we evaluated the LS intervals using calibrated cross-sectional scanning electron microscopy (SEM). A comparison of the evaluation results between SEM and 3DXRM for the LS intervals provided the magnification calibration factor for 3DXRM and validated the LSs, whereby the interval methods and feasibility of constructing an SI traceability system were evaluated using the calibrated SEM. Consequently, a magnification calibration factor of 1.01 was obtained for 3DXRM based on the intervals of the LSs evaluated by SEM. A possible route for realizing SI-traceable magnification calibration of 3DXRM has been presented.

使用计算机断层扫描(CT)的 X 射线显微镜是一种出色的三维成像仪器。三维 X 射线显微镜(3DXRM)是一种无损成像技术,用于检查单位为亚微米或更小的内部和外部结构。三维 X 射线显微镜虽然很有吸引力,但主要用作观察仪器,在定量评估和质量控制方面作为测量系统受到限制。在坐标测量系统等测量系统中使用时需要校准,并且需要特定的标准样品和评估程序。标准样品的认证值最好能溯源至国际单位制 (SI)。在 3DXRM 测量系统中,线结构 (LS) 被制作为原型标准样品,用于进行放大率校准。在本研究中,我们使用校准过的横截面扫描电子显微镜 (SEM) 对 LS 间隔进行了评估。通过比较扫描电子显微镜和 3DXRM 对 LS 间隔的评估结果,为 3DXRM 提供了放大倍率校准系数,并验证了 LS,从而使用校准的扫描电子显微镜评估了构建 SI 可追溯性系统的间隔方法和可行性。因此,根据 SEM 评估的 LS 间隔,3DXRM 的放大校准系数为 1.01。介绍了实现 SI 可追踪的 3DXRM 放大率校准的可能途径。
{"title":"Magnification calibration of X-ray 3D microscopy using micro-line structures.","authors":"Yasushi Azuma, Kazuhiro Kumagai, Naoki Kunishima, Koichiro Ito","doi":"10.1093/jmicro/dfae045","DOIUrl":"10.1093/jmicro/dfae045","url":null,"abstract":"<p><p>X-ray microscopy using computed tomography is an excellent 3D imaging instrument. Three-dimensional X-ray microscopy (3DXRM) is a nondestructive imaging technique used to inspect internal and external structures in units of submicrometers or less. The 3DXRM, although attractive, is mostly used as an observation instrument and is limited as a measurement system in quantitative evaluation and quality control. Calibration is required for use in measurement systems such as coordinate measurement systems, and specific standard samples and evaluation procedures are needed. The certified values of the standard samples must ideally be traceable to the International System of Units (SI). In the 3DXRM measurement system, line structures (LSs) are fabricated as prototype standard samples to conduct magnification calibration. In this study, we evaluated the LS intervals using calibrated cross-sectional scanning electron microscopy (SEM). A comparison of the evaluation results between SEM and 3DXRM for the LS intervals provided the magnification calibration factor for 3DXRM and validated the LSs, whereby the interval methods and feasibility of constructing an SI traceability system were evaluated using the calibrated SEM. Consequently, a magnification calibration factor of 1.01 was obtained for 3DXRM based on the intervals of the LSs evaluated by SEM. A possible route for realizing SI-traceable magnification calibration of 3DXRM has been presented.</p>","PeriodicalId":74193,"journal":{"name":"Microscopy (Oxford, England)","volume":" ","pages":"48-56"},"PeriodicalIF":0.0,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142309284","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Precise measurement of spatial coherence and axial brightness based on the Wigner function reconstruction in transmission electron microscopes with field emission guns and a thermionic emission gun. 在配备场发射枪和热离子发射枪的透射电子显微镜中,根据维格纳函数重构精确测量空间相干性和轴向亮度。
Pub Date : 2025-01-30 DOI: 10.1093/jmicro/dfae040
Shuhei Hatanaka, Jun Yamasaki

The spatial coherence and the axial brightness of a cold field emission gun, a Schottky field emission gun and a lanthanum hexaboride thermionic gun are precisely measured. By analyzing the Airy pattern from a selected area aperture, various parameters including the spatial coherence length are determined. Using the determined coherence length, the axial brightness of the field emission guns is estimated using the equation which we previously derived based on the discussion of the Wigner function of an electron beam. We also make some extensions in the method to be applicable to the measurements of the thermionic gun, which has anisotropic intensity distribution in most cases unlike the field emission guns. Not only conventional average brightness but also the axial brightness measured for the three kinds of emitters are compared accurately and precisely without being influenced by the measurement conditions.

精确测量了冷场发射枪、肖特基场发射枪和 $mathrm{LaB}_6$ 热离子枪的空间相干性和轴向亮度。通过分析选定区域孔径的艾里模式,可以确定包括空间相干长度在内的各种参数。利用确定的相干长度,通过我们之前在讨论电子束维格纳函数的基础上推导出的方程,可以估算出场发射枪的轴向亮度。我们还对该方法进行了一些扩展,使其适用于热离子枪的测量,因为热离子枪与场发射枪不同,在大多数情况下具有各向异性的强度分布。在不受测量条件影响的情况下,我们对三种发射器测得的轴向亮度进行了精确的比较,而不是传统的平均亮度。
{"title":"Precise measurement of spatial coherence and axial brightness based on the Wigner function reconstruction in transmission electron microscopes with field emission guns and a thermionic emission gun.","authors":"Shuhei Hatanaka, Jun Yamasaki","doi":"10.1093/jmicro/dfae040","DOIUrl":"10.1093/jmicro/dfae040","url":null,"abstract":"<p><p>The spatial coherence and the axial brightness of a cold field emission gun, a Schottky field emission gun and a lanthanum hexaboride thermionic gun are precisely measured. By analyzing the Airy pattern from a selected area aperture, various parameters including the spatial coherence length are determined. Using the determined coherence length, the axial brightness of the field emission guns is estimated using the equation which we previously derived based on the discussion of the Wigner function of an electron beam. We also make some extensions in the method to be applicable to the measurements of the thermionic gun, which has anisotropic intensity distribution in most cases unlike the field emission guns. Not only conventional average brightness but also the axial brightness measured for the three kinds of emitters are compared accurately and precisely without being influenced by the measurement conditions.</p>","PeriodicalId":74193,"journal":{"name":"Microscopy (Oxford, England)","volume":" ","pages":"20-27"},"PeriodicalIF":0.0,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142115645","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Simultaneous observation of multiple interferograms with Mach-Zehnder type electron interferometer on a 1.2-MV field-emission transmission electron microscope. 在 1.2-MV 场发射透射电子显微镜上使用马赫-泽恩德型电子干涉仪同时观测多个干涉图。
Pub Date : 2025-01-30 DOI: 10.1093/jmicro/dfae030
Tetsuya Akashi, Yoshio Takahashi, Ken Harada

We developed a Mach-Zehnder type electron interferometer (MZ-EI) that enables simultaneous observation of interferograms created at multiple output locations on a 1.2-MV field-emission transmission electron microscope. This MZ-EI is composed of two single-crystal thin films, a lens located between the single-crystal thin films and imaging lenses. By comparing interferograms created by electron waves travelling through different beam paths, we found that the relative phase difference was caused by phase modulation passing through the single crystals and by aberrations and defocus values of the lenses. We also confirmed that the relative phase difference can be controlled using the tilted illumination method.

我们开发了一种马赫-泽恩德型电子干涉仪(MZ-EI),可以同时观测 1.2-MV 场发射透射电子显微镜上多个输出位置产生的干涉图。这种 MZ-EI 由两个单晶薄膜、位于单晶薄膜之间的透镜和成像透镜组成。通过比较电子波通过不同光束路径产生的干涉图,我们发现相对相位差是由通过单晶的相位调制以及透镜的像差和散焦值造成的。我们还证实,相对相位差可以用倾斜照明法来控制。
{"title":"Simultaneous observation of multiple interferograms with Mach-Zehnder type electron interferometer on a 1.2-MV field-emission transmission electron microscope.","authors":"Tetsuya Akashi, Yoshio Takahashi, Ken Harada","doi":"10.1093/jmicro/dfae030","DOIUrl":"10.1093/jmicro/dfae030","url":null,"abstract":"<p><p>We developed a Mach-Zehnder type electron interferometer (MZ-EI) that enables simultaneous observation of interferograms created at multiple output locations on a 1.2-MV field-emission transmission electron microscope. This MZ-EI is composed of two single-crystal thin films, a lens located between the single-crystal thin films and imaging lenses. By comparing interferograms created by electron waves travelling through different beam paths, we found that the relative phase difference was caused by phase modulation passing through the single crystals and by aberrations and defocus values of the lenses. We also confirmed that the relative phase difference can be controlled using the tilted illumination method.</p>","PeriodicalId":74193,"journal":{"name":"Microscopy (Oxford, England)","volume":" ","pages":"63-70"},"PeriodicalIF":0.0,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141473294","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Near-field electron ptychography using full-field structured illumination. 使用全场结构照明的近场电子层析成像技术。
Pub Date : 2025-01-30 DOI: 10.1093/jmicro/dfae035
Hirokazu Tamaki, Koh Saitoh

A new configuration for near-field ptychography using a full-field illumination with a structured electron beam is proposed. A structured electron beam illuminating the entire field of view is scanned over the specimen, and a series of in-line holograms formed in the near-field region below the specimen are collected. The structured beam is generated by a conductive film with random openings, which ensures high stability and coherence of the beam. Observation in the near-field region reduces the beam concentration that occurs in the far-field region, which contributes to accurate recording of the beam intensity with a finite dynamic range of the detectors. The use of full-field illumination prevents the accumulation of errors caused by concatenating the local structures, which is the method used in conventional reconstruction. Since all holograms are obtained from the entire field of view, they have uniform multiplicity in terms of specimen information within the field of view. This contributes to robust and efficient reconstruction for a large field of view. The proposed method was tested using both simulated and experimental holograms. For the simulated holograms, the reconstruction of the specimen transmission function was achieved with an error less than 1/3485 of the wavelength. The method was further validated using experimental holograms obtained from MgO particles. The reconstructed phase transmission function of the specimen was consistent with the specimen structure and was equivalent to a mean inner potential of 13.53±0.16 V on the MgO particle, which is in close agreement with previously reported values.

本文提出了一种利用结构电子束全场照明的近场全息成像新结构。照射整个视场的结构电子束在试样上扫描,收集试样下方近场区域形成的一系列在线全息图。结构光束由带有随机开口的导电薄膜产生,这确保了光束的高稳定性和相干性。在近场区域进行观测可减少远场区域出现的光束集中现象,从而有助于在探测器有限的动态范围内精确记录光束强度。使用全场照明可防止因串联局部结构而导致的误差累积,而串联局部结构是传统重建中使用的方法。由于所有全息图都是从整个视场获得的,因此视场内的样本信息具有统一的多重性。这有助于对大视场进行稳健高效的重建。我们使用模拟全息图和实验全息图对所提出的方法进行了测试。在模拟全息图中,试样传输函数的重建误差小于波长的 1/3485。使用氧化镁颗粒获得的实验全息图进一步验证了该方法。重建后的试样相透射函数与试样结构一致,相当于氧化镁颗粒上的平均内电势为 V,这与之前报道的数值非常接近。
{"title":"Near-field electron ptychography using full-field structured illumination.","authors":"Hirokazu Tamaki, Koh Saitoh","doi":"10.1093/jmicro/dfae035","DOIUrl":"10.1093/jmicro/dfae035","url":null,"abstract":"<p><p>A new configuration for near-field ptychography using a full-field illumination with a structured electron beam is proposed. A structured electron beam illuminating the entire field of view is scanned over the specimen, and a series of in-line holograms formed in the near-field region below the specimen are collected. The structured beam is generated by a conductive film with random openings, which ensures high stability and coherence of the beam. Observation in the near-field region reduces the beam concentration that occurs in the far-field region, which contributes to accurate recording of the beam intensity with a finite dynamic range of the detectors. The use of full-field illumination prevents the accumulation of errors caused by concatenating the local structures, which is the method used in conventional reconstruction. Since all holograms are obtained from the entire field of view, they have uniform multiplicity in terms of specimen information within the field of view. This contributes to robust and efficient reconstruction for a large field of view. The proposed method was tested using both simulated and experimental holograms. For the simulated holograms, the reconstruction of the specimen transmission function was achieved with an error less than 1/3485 of the wavelength. The method was further validated using experimental holograms obtained from MgO particles. The reconstructed phase transmission function of the specimen was consistent with the specimen structure and was equivalent to a mean inner potential of 13.53±0.16 V on the MgO particle, which is in close agreement with previously reported values.</p>","PeriodicalId":74193,"journal":{"name":"Microscopy (Oxford, England)","volume":" ","pages":"10-19"},"PeriodicalIF":0.0,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11781274/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141763146","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Surface sensitivity of atomic-resolution secondary electron imaging. 原子分辨率二次电子成像的表面灵敏度。
Pub Date : 2025-01-30 DOI: 10.1093/jmicro/dfae041
Koh Saitoh, Teppei Oyobe, Keisuke Igarashi, Takeshi Sato, Hiroaki Matsumoto, Hiromi Inada, Takahiko Endo, Yasumitsu Miyata, Rei Usami, Taishi Takenobu

The surface sensitivity of high-resolution secondary electron (SE) imaging is examined using twisted bilayers of MoS2 stacked at an angle of 30°. High-resolution SE images of the twisted bilayer MoS2 show a honeycomb structure composed of Mo and S atoms, elucidating the monolayer structure of MoS2. Simultaneously captured annular dark-field scanning transmission electron microscope images from the same region show the projected structure of the two layers. That is, the SE images from the bilayer MoS2 selectively visualize the surface monolayer. It is noted that the SE yields from the surface monolayer are approximately three times higher than those from the second monolayer, likely attributable to attenuation when SEs emitted from the second layer traverse the surface layer. The surface sensitivity of high-resolution SE imaging is examined using twisted bilayers of MoS2 stacked at an angle of 30°. It was found that the SE images of the MoS2 bilayer visualize the surface monolayer approximately three times more intensely than the second monolayer.

利用以 30 度角堆叠的扭曲双层 MoS2,研究了高分辨率二次电子(SE)成像的表面灵敏度。扭曲双层 MoS2 的高分辨率 SE 图像显示了由 Mo 原子和 S 原子组成的蜂巢结构,从而阐明了 MoS2 的单层结构。从同一区域同时拍摄的环形暗场扫描透射电子显微镜图像显示了两层的投影结构。也就是说,双层 MoS2 的 SE 图像可选择性地观察到表面单层。值得注意的是,来自表面单层的 SE 产率大约是来自第二单层的 SE 产率的 3 倍,这可能是由于从第二层发射的 SE 穿过表面层时产生了衰减。小摘要:本研究利用由表层和基底组成的最薄系统--MoS2 双层膜,对原子分辨率二次电子成像的表面灵敏度进行了研究。研究发现,二次电子对表面单层原子排列的观察强度是第二层的三倍。
{"title":"Surface sensitivity of atomic-resolution secondary electron imaging.","authors":"Koh Saitoh, Teppei Oyobe, Keisuke Igarashi, Takeshi Sato, Hiroaki Matsumoto, Hiromi Inada, Takahiko Endo, Yasumitsu Miyata, Rei Usami, Taishi Takenobu","doi":"10.1093/jmicro/dfae041","DOIUrl":"10.1093/jmicro/dfae041","url":null,"abstract":"<p><p>The surface sensitivity of high-resolution secondary electron (SE) imaging is examined using twisted bilayers of MoS2 stacked at an angle of 30°. High-resolution SE images of the twisted bilayer MoS2 show a honeycomb structure composed of Mo and S atoms, elucidating the monolayer structure of MoS2. Simultaneously captured annular dark-field scanning transmission electron microscope images from the same region show the projected structure of the two layers. That is, the SE images from the bilayer MoS2 selectively visualize the surface monolayer. It is noted that the SE yields from the surface monolayer are approximately three times higher than those from the second monolayer, likely attributable to attenuation when SEs emitted from the second layer traverse the surface layer. The surface sensitivity of high-resolution SE imaging is examined using twisted bilayers of MoS2 stacked at an angle of 30°. It was found that the SE images of the MoS2 bilayer visualize the surface monolayer approximately three times more intensely than the second monolayer.</p>","PeriodicalId":74193,"journal":{"name":"Microscopy (Oxford, England)","volume":" ","pages":"28-34"},"PeriodicalIF":0.0,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11781273/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142302784","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Total third-degree variation for noise reduction in atomic-resolution STEM images. 用于原子分辨率 STEM 图像降噪的总三度变异。
Pub Date : 2025-01-30 DOI: 10.1093/jmicro/dfae031
Kazuaki Kawahara, Ryo Ishikawa, Shun Sasano, Naoya Shibata, Yuichi Ikuhara

Scanning Transmission Electron Microscopy (STEM) enables direct determination of atomic arrangements in materials and devices. However, materials such as battery components are weak for electron beam irradiation, and low electron doses are required to prevent beam-induced damages. Noise removal is thus essential for precise structural analysis of electron-beam-sensitive materials at atomic resolution. Total square variation (TSV) regularization is an algorithm that exhibits high noise removal performance. However, the use of the TSV regularization term leads to significant image blurring and intensity reduction. To address these problems, we here propose a new approach adopting L2 norm regularization based on higher-order total variation. An atomic-resolution STEM image can be approximated as a set of smooth curves represented by quadratic functions. Since the third-degree derivative of any quadratic function is 0, total third-degree variation (TTDV) is suitable for a regularization term. The application of TTDV for denoising the atomic-resolution STEM image of CaF2 observed along the [001] zone axis is shown, where we can clearly see the Ca and F atomic columns without compromising image quality.

扫描透射电子显微镜(STEM)可直接测定材料和设备中的原子排列。然而,电池组件等材料对电子束辐照的耐受性较弱,需要较低的电子剂量以防止电子束引起的损坏。因此,要以原子分辨率对电子束敏感材料进行精确的结构分析,必须去除噪声。总平方变异(TSV)正则化是一种具有高去噪性能的算法。然而,使用 TSV 正则化项会导致图像严重模糊和强度降低。为了解决这些问题,我们在此提出了一种基于高阶总变化的 L2 规范正则化新方法。原子分辨率 STEM 图像可近似为一组由二次函数表示的平滑曲线。由于任何二次函数的三阶导数都是 0,因此总三阶变异(TTDV)适合作为正则化项。图中显示了应用 TTDV 对沿 [001] 区轴线观察到的 CaF2 原子分辨率 STEM 图像进行去噪的情况,在不影响图像质量的情况下,我们可以清楚地看到 Ca 和 F 原子列。
{"title":"Total third-degree variation for noise reduction in atomic-resolution STEM images.","authors":"Kazuaki Kawahara, Ryo Ishikawa, Shun Sasano, Naoya Shibata, Yuichi Ikuhara","doi":"10.1093/jmicro/dfae031","DOIUrl":"10.1093/jmicro/dfae031","url":null,"abstract":"<p><p>Scanning Transmission Electron Microscopy (STEM) enables direct determination of atomic arrangements in materials and devices. However, materials such as battery components are weak for electron beam irradiation, and low electron doses are required to prevent beam-induced damages. Noise removal is thus essential for precise structural analysis of electron-beam-sensitive materials at atomic resolution. Total square variation (TSV) regularization is an algorithm that exhibits high noise removal performance. However, the use of the TSV regularization term leads to significant image blurring and intensity reduction. To address these problems, we here propose a new approach adopting L2 norm regularization based on higher-order total variation. An atomic-resolution STEM image can be approximated as a set of smooth curves represented by quadratic functions. Since the third-degree derivative of any quadratic function is 0, total third-degree variation (TTDV) is suitable for a regularization term. The application of TTDV for denoising the atomic-resolution STEM image of CaF2 observed along the [001] zone axis is shown, where we can clearly see the Ca and F atomic columns without compromising image quality.</p>","PeriodicalId":74193,"journal":{"name":"Microscopy (Oxford, England)","volume":" ","pages":"1-9"},"PeriodicalIF":0.0,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141494463","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Surface potential distribution of resist exposed by electron beam and the non-charging exposure conditions. 电子束和非充电曝光条件下光刻胶的表面电位分布。
Pub Date : 2025-01-30 DOI: 10.1093/jmicro/dfae044
Masatoshi Kotera, Yoshinobu Kono

In this study, we experimentally analyzed the charging phenomenon when an insulating resist film on a conductive layer formed on bulk glass is irradiated by electron beams (EBs). To quantify the charging potential induced, an electrostatic force microscope device was installed in the scanning electron microscope sample chamber, and potential distributions formed under various exposure conditions were obtained. Based on the results obtained, a model for charge accumulation within the sample, explaining positive and negative charging and their transitions, was developed. At an EB acceleration voltage of 30 kV, the following observations were made: 'global charging' could be avoided by applying -5 V to the sample. Regarding 'local charging' near the exposure area of the EB, at low exposure doses, emission of secondary electrons from the sample surface induced positive charging, while the accumulation of incident electrons within the sample induced negative charging. At exposure doses where the effects of both are balanced, the sample exhibited zero potential, revealing the appearance of the 'first zero-cross exposure dose'. At higher exposure doses, the sample transitions from negative to positive as the exposure dose increases due to the electron-beam-induced conduction, resulting in the so-called second zero-cross exposure dose. The exposure dose dependence of the charging potential distribution at various acceleration voltages was obtained. In particular, we found that at an acceleration voltage of 0.6 kV, the sample surface is not charged even when exposed to small to very large doses of EBs.

在这项研究中,我们通过实验分析了在大块玻璃上形成的导电层上的绝缘抗蚀膜在电子束照射下的充电现象。为了量化引起的充电电势,我们在扫描电子显微镜样品室中安装了静电力显微镜装置,并获得了在不同照射条件下形成的电势分布。根据所获得的结果,建立了样品内部的电荷积累模型,解释了正负电荷及其转换。在 30 千伏的电子束加速电压下,得出了以下结论:对样品施加 -5V 电压可避免 "整体充电"。至于电子束照射区域附近的 "局部充电",在低照射剂量下,样品表面发射的二次电子会引起正充电,而入射电子在样品内部的积累则会引起负充电。在两者影响平衡的曝光剂量下,样品显示出零电位,出现了 "第一个零交叉曝光剂量"。在较高的曝光剂量下,由于电子束诱导传导,随着曝光剂量的增加,样品会从负电位转变为正电位,这就是所谓的 "第二次零交叉曝光剂量"。我们获得了不同加速电压下充电电势分布的曝光剂量依赖性。我们特别发现,在加速电压为0.6千伏时,即使暴露在小剂量到超大剂量的电子束中,样品表面也不会带电。
{"title":"Surface potential distribution of resist exposed by electron beam and the non-charging exposure conditions.","authors":"Masatoshi Kotera, Yoshinobu Kono","doi":"10.1093/jmicro/dfae044","DOIUrl":"10.1093/jmicro/dfae044","url":null,"abstract":"<p><p>In this study, we experimentally analyzed the charging phenomenon when an insulating resist film on a conductive layer formed on bulk glass is irradiated by electron beams (EBs). To quantify the charging potential induced, an electrostatic force microscope device was installed in the scanning electron microscope sample chamber, and potential distributions formed under various exposure conditions were obtained. Based on the results obtained, a model for charge accumulation within the sample, explaining positive and negative charging and their transitions, was developed. At an EB acceleration voltage of 30 kV, the following observations were made: 'global charging' could be avoided by applying -5 V to the sample. Regarding 'local charging' near the exposure area of the EB, at low exposure doses, emission of secondary electrons from the sample surface induced positive charging, while the accumulation of incident electrons within the sample induced negative charging. At exposure doses where the effects of both are balanced, the sample exhibited zero potential, revealing the appearance of the 'first zero-cross exposure dose'. At higher exposure doses, the sample transitions from negative to positive as the exposure dose increases due to the electron-beam-induced conduction, resulting in the so-called second zero-cross exposure dose. The exposure dose dependence of the charging potential distribution at various acceleration voltages was obtained. In particular, we found that at an acceleration voltage of 0.6 kV, the sample surface is not charged even when exposed to small to very large doses of EBs.</p>","PeriodicalId":74193,"journal":{"name":"Microscopy (Oxford, England)","volume":" ","pages":"35-47"},"PeriodicalIF":0.0,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142302783","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Microscopy (Oxford, England)
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1