Revealing chemistry-structure-function relationships in shark vertebrae across length scales.

Dawn Raja Somu, Malena Fuentes, Lihua Lou, Arvind Agarwal, Marianne Porter, Vivian Merk
{"title":"Revealing chemistry-structure-function relationships in shark vertebrae across length scales.","authors":"Dawn Raja Somu, Malena Fuentes, Lihua Lou, Arvind Agarwal, Marianne Porter, Vivian Merk","doi":"10.1016/j.actbio.2024.09.041","DOIUrl":null,"url":null,"abstract":"<p><p>Shark cartilage presents a complex material composed of collagen, proteoglycans, and bioapatite. In the present study, we explored the link between microstructure, chemical composition, and biomechanical function of shark vertebral cartilage using Polarized Light Microscopy (PLM), Atomic Force Microscopy (AFM), Confocal Raman Microspectroscopy, and Nanoindentation. Our investigation focused on vertebrae from Blacktip and Shortfin Mako sharks. As typical representatives of the orders Carcharhiniformes and Lamniformes, these species differ in preferred habitat, ecological role, and swimming style. We observed structural variations in mineral organization and collagen fiber arrangement using PLM and AFM. In both sharks, the highly calcified corpus calcarea shows a ridged morphology, while a chain-like network is present in the less mineralized intermedialia. Raman spectromicroscopy demonstrates a relative increase of glucosaminocycans (GAGs) with respect to collagen and a decrease in mineral-rich zones, underlining the role of GAGs in modulating bioapatite mineralization. Region-specific testing confirmed that intravertebral variations in mineral content and arrangement result in distinct nanomechanical properties. Local Young's moduli from mineralized regions exceeded bulk values by a factor of 10. Overall, this work provides profound insights into a flexible yet strong biocomposite, which is crucial for the extraordinary speed of cartilaginous fish in the worlds' oceans. STATEMENT OF SIGNIFICANCE: Shark cartilage is a morphologically complex material composed of collagen, sulfated proteoglycans, and calcium phosphate minerals. This study explores the link between microstructure, chemical composition, and biological mechanical function of shark vertebral cartilage at the micro- and nanometer scale in typical Carcharhiniform and Lamniform shark species, which represent different vertebral mineralization morphologies, swimming styles and speeds. By studying the intricacies of shark vertebrae, we hope to lay the foundation for biomimetic composite materials that harness lamellar reinforcement and tailored stiffness gradients, capable of dynamic and localized adjustments during movement.</p>","PeriodicalId":93848,"journal":{"name":"Acta biomaterialia","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta biomaterialia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.actbio.2024.09.041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Shark cartilage presents a complex material composed of collagen, proteoglycans, and bioapatite. In the present study, we explored the link between microstructure, chemical composition, and biomechanical function of shark vertebral cartilage using Polarized Light Microscopy (PLM), Atomic Force Microscopy (AFM), Confocal Raman Microspectroscopy, and Nanoindentation. Our investigation focused on vertebrae from Blacktip and Shortfin Mako sharks. As typical representatives of the orders Carcharhiniformes and Lamniformes, these species differ in preferred habitat, ecological role, and swimming style. We observed structural variations in mineral organization and collagen fiber arrangement using PLM and AFM. In both sharks, the highly calcified corpus calcarea shows a ridged morphology, while a chain-like network is present in the less mineralized intermedialia. Raman spectromicroscopy demonstrates a relative increase of glucosaminocycans (GAGs) with respect to collagen and a decrease in mineral-rich zones, underlining the role of GAGs in modulating bioapatite mineralization. Region-specific testing confirmed that intravertebral variations in mineral content and arrangement result in distinct nanomechanical properties. Local Young's moduli from mineralized regions exceeded bulk values by a factor of 10. Overall, this work provides profound insights into a flexible yet strong biocomposite, which is crucial for the extraordinary speed of cartilaginous fish in the worlds' oceans. STATEMENT OF SIGNIFICANCE: Shark cartilage is a morphologically complex material composed of collagen, sulfated proteoglycans, and calcium phosphate minerals. This study explores the link between microstructure, chemical composition, and biological mechanical function of shark vertebral cartilage at the micro- and nanometer scale in typical Carcharhiniform and Lamniform shark species, which represent different vertebral mineralization morphologies, swimming styles and speeds. By studying the intricacies of shark vertebrae, we hope to lay the foundation for biomimetic composite materials that harness lamellar reinforcement and tailored stiffness gradients, capable of dynamic and localized adjustments during movement.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
跨长度尺度揭示鲨鱼脊椎骨的化学结构功能关系
鲨鱼软骨是一种由胶原蛋白、蛋白多糖和生物磷灰石组成的复杂材料。在本研究中,我们使用偏振光显微镜(PLM)、原子力显微镜(AFM)、共焦拉曼显微光谱仪和纳米压痕法探讨了鲨鱼脊椎软骨的微观结构、化学成分和生物力学功能之间的联系。我们的研究重点是黑鳍真鲨和短鳍真鲨的脊椎骨。作为胭脂鱼形目和蓝鳍鲨形目中的典型代表,这两种鲨鱼在喜欢的栖息地、生态角色和游泳方式上存在差异。我们使用 PLM 和 AFM 观察了矿物组织和胶原纤维排列的结构变化。在这两种鲨鱼中,钙化程度较高的钙化体呈现脊状形态,而矿化程度较低的中肋间则呈现链状网络。拉曼光谱显示,相对于胶原蛋白,氨基葡萄糖(GAGs)的含量相对增加,而富矿区的含量则相对减少,这强调了氨基葡萄糖(GAGs)在调节生物磷灰石矿化过程中的作用。特定区域测试证实,椎体内矿物质含量和排列的变化会导致不同的纳米力学性能。矿化区域的局部杨氏模量比块体值高出 10 倍。总之,这项研究为了解一种灵活而又坚固的生物复合材料提供了深刻的见解,而这种复合材料对于软骨鱼类在世界海洋中的非凡速度至关重要。意义说明:鲨鱼软骨是一种形态复杂的材料,由胶原蛋白、硫酸化蛋白聚糖和磷酸钙矿物质组成。这项研究探索了鲨鱼脊椎软骨在微米和纳米尺度上的微观结构、化学成分和生物力学功能之间的联系,研究对象是典型的胭脂鱼形鲨鱼和蓝鳍鲨物种,它们代表了不同的脊椎矿化形态、游泳方式和速度。通过研究鲨鱼椎骨的复杂性,我们希望为生物仿生复合材料奠定基础,这种材料可利用薄片加固和量身定制的刚度梯度,能够在运动过程中进行动态和局部调整。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Tuning a Bioengineered Hydrogel for Studying Astrocyte Reactivity in Glioblastoma. Versatile Self-Assembled Near-Infrared SERS Nanoprobes For Multidrug-Resistant Bacterial Infection-Specific Surveillance and Therapy. An Optical System for Cellular Mechanostimulation in 3D Hydrogels. Automated model discovery for textile structures: The unique mechanical signature of warp knitted fabrics. Biopolymer Immune Implants co-loaded with TMZ, R848 and IOX1 for Perioperative Therapy of Glioblastoma.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1