Kamil Pabis , Diogo Barardo , Jan Gruber , Olga Sirbu , Marco Malavolta , Kumar Selvarajoo , Matt Kaeberlein , Brian K. Kennedy
{"title":"The impact of short-lived controls on the interpretation of lifespan experiments and progress in geroscience – Through the lens of the “900-day rule”","authors":"Kamil Pabis , Diogo Barardo , Jan Gruber , Olga Sirbu , Marco Malavolta , Kumar Selvarajoo , Matt Kaeberlein , Brian K. Kennedy","doi":"10.1016/j.arr.2024.102512","DOIUrl":null,"url":null,"abstract":"<div><div>Although lifespan extension remains the gold standard for assessing interventions proposed to impact the biology of aging, there are important limitations to this approach. Our reanalysis of lifespan studies from multiple sources suggests that short lifespans in the control group exaggerate the relative efficacy of putative longevity interventions. Results may be exaggerated due to statistical effects (e.g. regression to the mean) or other factors. Moreover, due to the high cost and long timeframes of mouse studies, it is rare that a particular longevity intervention will be independently replicated by multiple groups. To facilitate identification of successful interventions, we propose an alternative approach particularly suitable for well-characterized inbred and HET3 mice. In our opinion, the level of confidence we can have in an intervention is proportional to the degree of lifespan extension above the strain- and species-specific upper limit of lifespan, which we can estimate from comparison to historical controls. In the absence of independent replication, a putative mouse longevity intervention should only be considered with high confidence when control median lifespans are close to 900 days or if the final lifespan of the treated group is considerably above 900 days. Using this “900-day rule” we identified several candidate interventions from the literature that merit follow-up studies.</div></div>","PeriodicalId":55545,"journal":{"name":"Ageing Research Reviews","volume":"101 ","pages":"Article 102512"},"PeriodicalIF":12.5000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ageing Research Reviews","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1568163724003301","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Although lifespan extension remains the gold standard for assessing interventions proposed to impact the biology of aging, there are important limitations to this approach. Our reanalysis of lifespan studies from multiple sources suggests that short lifespans in the control group exaggerate the relative efficacy of putative longevity interventions. Results may be exaggerated due to statistical effects (e.g. regression to the mean) or other factors. Moreover, due to the high cost and long timeframes of mouse studies, it is rare that a particular longevity intervention will be independently replicated by multiple groups. To facilitate identification of successful interventions, we propose an alternative approach particularly suitable for well-characterized inbred and HET3 mice. In our opinion, the level of confidence we can have in an intervention is proportional to the degree of lifespan extension above the strain- and species-specific upper limit of lifespan, which we can estimate from comparison to historical controls. In the absence of independent replication, a putative mouse longevity intervention should only be considered with high confidence when control median lifespans are close to 900 days or if the final lifespan of the treated group is considerably above 900 days. Using this “900-day rule” we identified several candidate interventions from the literature that merit follow-up studies.
期刊介绍:
With the rise in average human life expectancy, the impact of ageing and age-related diseases on our society has become increasingly significant. Ageing research is now a focal point for numerous laboratories, encompassing leaders in genetics, molecular and cellular biology, biochemistry, and behavior. Ageing Research Reviews (ARR) serves as a cornerstone in this field, addressing emerging trends.
ARR aims to fill a substantial gap by providing critical reviews and viewpoints on evolving discoveries concerning the mechanisms of ageing and age-related diseases. The rapid progress in understanding the mechanisms controlling cellular proliferation, differentiation, and survival is unveiling new insights into the regulation of ageing. From telomerase to stem cells, and from energy to oxyradical metabolism, we are witnessing an exciting era in the multidisciplinary field of ageing research.
The journal explores the cellular and molecular foundations of interventions that extend lifespan, such as caloric restriction. It identifies the underpinnings of manipulations that extend lifespan, shedding light on novel approaches for preventing age-related diseases. ARR publishes articles on focused topics selected from the expansive field of ageing research, with a particular emphasis on the cellular and molecular mechanisms of the aging process. This includes age-related diseases like cancer, cardiovascular disease, diabetes, and neurodegenerative disorders. The journal also covers applications of basic ageing research to lifespan extension and disease prevention, offering a comprehensive platform for advancing our understanding of this critical field.