Characterizing Biomechanics of Limbal Niche Using Vibrational Optical Coherence Elastography

IF 2 3区 物理与天体物理 Q3 BIOCHEMICAL RESEARCH METHODS Journal of Biophotonics Pub Date : 2024-09-27 DOI:10.1002/jbio.202400172
Ryan Dimmock, Yilong Zhang, Gibran F. Butt, Saaeha Rauz, Zhihong Huang, Ying Yang
{"title":"Characterizing Biomechanics of Limbal Niche Using Vibrational Optical Coherence Elastography","authors":"Ryan Dimmock,&nbsp;Yilong Zhang,&nbsp;Gibran F. Butt,&nbsp;Saaeha Rauz,&nbsp;Zhihong Huang,&nbsp;Ying Yang","doi":"10.1002/jbio.202400172","DOIUrl":null,"url":null,"abstract":"<p>The limbal niche is an adult source of epithelial stem cells which regenerate the cornea epithelium. The architecture and biomechanical properties of the limbus have previously been demonstrated to change due to aging and disease. This study aims to non-destructively and simultaneously quantify these limbal niche properties, along with their age-related changes. A lab-built vibrational optical coherence elastography (OCE) device consisting of a phase-sensitive optical coherence tomography (OCT) with a vibrational stimulator has been used to collect structural images and the depth-resolved elasticity of human corneoscleral tissues (aged 4–96 years old). The limbal palisades of Vogt (POV) were delineated well in OCT images which were validated by histology. The POVs have been spatially mapped with simultaneous elasticity measurements in cross-sections, showing tissue stiffness distributions across the undulations. A significant influence of age on the dimensions of the POVs was explored. The elastic modulus within the limbal niches for the ≥65-year-old group was significantly higher than that of the &lt;65-year-old group.</p>","PeriodicalId":184,"journal":{"name":"Journal of Biophotonics","volume":"17 11","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jbio.202400172","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biophotonics","FirstCategoryId":"101","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jbio.202400172","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

The limbal niche is an adult source of epithelial stem cells which regenerate the cornea epithelium. The architecture and biomechanical properties of the limbus have previously been demonstrated to change due to aging and disease. This study aims to non-destructively and simultaneously quantify these limbal niche properties, along with their age-related changes. A lab-built vibrational optical coherence elastography (OCE) device consisting of a phase-sensitive optical coherence tomography (OCT) with a vibrational stimulator has been used to collect structural images and the depth-resolved elasticity of human corneoscleral tissues (aged 4–96 years old). The limbal palisades of Vogt (POV) were delineated well in OCT images which were validated by histology. The POVs have been spatially mapped with simultaneous elasticity measurements in cross-sections, showing tissue stiffness distributions across the undulations. A significant influence of age on the dimensions of the POVs was explored. The elastic modulus within the limbal niches for the ≥65-year-old group was significantly higher than that of the <65-year-old group.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用振动光学相干弹性成像技术确定瓣膜壁龛的生物力学特征
角膜缘龛是上皮干细胞的成人来源,可再生角膜上皮。以前的研究表明,角膜缘的结构和生物力学特性会因衰老和疾病而发生变化。本研究旨在非破坏性地同时量化这些角膜缘龛特性及其与年龄相关的变化。实验室自制的振动光学相干弹性成像(OCE)设备由相位敏感光学相干断层扫描(OCT)和振动刺激器组成,用于收集人类角巩膜组织(4-96 岁)的结构图像和深度分辨弹性。OCT 图像很好地勾勒出了 Vogt 角巩膜瓣(POV)的轮廓,并通过组织学进行了验证。通过横截面的弹性同步测量,对 POV 进行了空间映射,显示了起伏处的组织硬度分布。研究发现,年龄对 POVs 的尺寸有重大影响。年龄≥65 岁组的睑缘龛内弹性模量明显高于年龄≥65 岁组的睑缘龛内弹性模量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Biophotonics
Journal of Biophotonics 生物-生化研究方法
CiteScore
5.70
自引率
7.10%
发文量
248
审稿时长
1 months
期刊介绍: The first international journal dedicated to publishing reviews and original articles from this exciting field, the Journal of Biophotonics covers the broad range of research on interactions between light and biological material. The journal offers a platform where the physicist communicates with the biologist and where the clinical practitioner learns about the latest tools for the diagnosis of diseases. As such, the journal is highly interdisciplinary, publishing cutting edge research in the fields of life sciences, medicine, physics, chemistry, and engineering. The coverage extends from fundamental research to specific developments, while also including the latest applications.
期刊最新文献
Front Cover Issue Information SKYQUANT 3D: Quantifying Vascular Anatomy With an Open-Source Workflow for Comprehensive Analysis of Volumetric Optoacoustic Angiography Data Front Cover Issue Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1