A simplified approach to discriminate between healthy subjects and patients with heart failure using cardiac magnetic resonance myocardial deformation imaging.

European heart journal. Imaging methods and practice Pub Date : 2024-09-12 eCollection Date: 2024-07-01 DOI:10.1093/ehjimp/qyae093
Undine Ella Witt, Maximilian Leo Müller, Rebecca Elisabeth Beyer, Johannes Wieditz, Susanna Salem, Djawid Hashemi, Wensu Chen, Mina Cvetkovic, Anna Clara Nolden, Patrick Doeblin, Moritz Blum, Gisela Thiede, Alexander Huppertz, Henning Steen, Bjoern Andrew Remppis, Volkmar Falk, Tim Friede, Sebastian Kelle
{"title":"A simplified approach to discriminate between healthy subjects and patients with heart failure using cardiac magnetic resonance myocardial deformation imaging.","authors":"Undine Ella Witt, Maximilian Leo Müller, Rebecca Elisabeth Beyer, Johannes Wieditz, Susanna Salem, Djawid Hashemi, Wensu Chen, Mina Cvetkovic, Anna Clara Nolden, Patrick Doeblin, Moritz Blum, Gisela Thiede, Alexander Huppertz, Henning Steen, Bjoern Andrew Remppis, Volkmar Falk, Tim Friede, Sebastian Kelle","doi":"10.1093/ehjimp/qyae093","DOIUrl":null,"url":null,"abstract":"<p><strong>Aims: </strong>Left ventricular global longitudinal strain (LV-GLS) shows promise as a marker to detect early heart failure (HF). This study sought to (i) establish cardiac magnetic resonance imaging (CMR)-derived LV-GLS cut-offs to differentiate healthy from HF for both acquisition-based and post-processing techniques, (ii) assess agreement, and (iii) provide a method to convert LV-GLS between both techniques.</p><p><strong>Methods and results: </strong>A secondary analysis of a prospective study enrolling healthy subjects (<i>n</i> = 19) and HF patients (<i>n</i> = 56) was conducted. LV-GLS was measured using fast strain-encoded imaging (fSENC) and feature tracking (FT). Receiver operating characteristic (ROC) analyses were performed to derive and evaluate LV-GLS cut-offs discriminating between healthy, HF with mild deformation impairment (DI), and HF with severe DI. Linear regression and Bland-Altman analyses assessed agreement. Cut-offs discriminating between healthy and HF were identified at -19.3% and -15.1% for fSENC and FT, respectively. Cut-offs of -15.8% (fSENC) and -10.8% (FT) further distinguished mild from severe DI. No significant differences in area under ROC curve were identified between fSENC and FT. Bland-Altman analysis revealed a bias of -4.01%, 95% CI -4.42, -3.50 for FT, considering fSENC as reference. Linear regression suggested a factor of 0.76 to rescale fSENC-derived LV-GLS to FT. Using this factor on fSENC-derived cut-offs yielded rescaled FT LV-GLS cut-offs of -14.7% (healthy vs. HF) and -12% (mild vs. severe DI).</p><p><strong>Conclusion: </strong>LV-GLS distinguishes healthy from HF with high accuracy. Each measurement technique requires distinct cut-offs, but rescaling factors facilitate conversion. An FT-based LV-GLS ≥ -15% simplifies HF detection in clinical routine.</p>","PeriodicalId":94317,"journal":{"name":"European heart journal. Imaging methods and practice","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11421468/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European heart journal. Imaging methods and practice","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/ehjimp/qyae093","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Aims: Left ventricular global longitudinal strain (LV-GLS) shows promise as a marker to detect early heart failure (HF). This study sought to (i) establish cardiac magnetic resonance imaging (CMR)-derived LV-GLS cut-offs to differentiate healthy from HF for both acquisition-based and post-processing techniques, (ii) assess agreement, and (iii) provide a method to convert LV-GLS between both techniques.

Methods and results: A secondary analysis of a prospective study enrolling healthy subjects (n = 19) and HF patients (n = 56) was conducted. LV-GLS was measured using fast strain-encoded imaging (fSENC) and feature tracking (FT). Receiver operating characteristic (ROC) analyses were performed to derive and evaluate LV-GLS cut-offs discriminating between healthy, HF with mild deformation impairment (DI), and HF with severe DI. Linear regression and Bland-Altman analyses assessed agreement. Cut-offs discriminating between healthy and HF were identified at -19.3% and -15.1% for fSENC and FT, respectively. Cut-offs of -15.8% (fSENC) and -10.8% (FT) further distinguished mild from severe DI. No significant differences in area under ROC curve were identified between fSENC and FT. Bland-Altman analysis revealed a bias of -4.01%, 95% CI -4.42, -3.50 for FT, considering fSENC as reference. Linear regression suggested a factor of 0.76 to rescale fSENC-derived LV-GLS to FT. Using this factor on fSENC-derived cut-offs yielded rescaled FT LV-GLS cut-offs of -14.7% (healthy vs. HF) and -12% (mild vs. severe DI).

Conclusion: LV-GLS distinguishes healthy from HF with high accuracy. Each measurement technique requires distinct cut-offs, but rescaling factors facilitate conversion. An FT-based LV-GLS ≥ -15% simplifies HF detection in clinical routine.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用心脏磁共振心肌变形成像区分健康受试者和心力衰竭患者的简化方法。
目的:左心室整体纵向应变(LV-GLS)有望成为检测早期心力衰竭(HF)的标志物。本研究旨在:(i) 建立心脏磁共振成像(CMR)得出的 LV-GLS 临界值,以区分基于采集和后处理技术的健康和 HF;(ii) 评估一致性;(iii) 提供在两种技术之间转换 LV-GLS 的方法:对一项前瞻性研究中的健康受试者(19 人)和心房颤动患者(56 人)进行了二次分析。使用快速应变编码成像(fSENC)和特征追踪(FT)测量了左心室-GLS。通过接收者操作特征(ROC)分析,得出并评估了区分健康人、轻度变形障碍(DI)的心房颤动患者和重度变形障碍(DI)的心房颤动患者的 LV-GLS 临界值。线性回归和 Bland-Altman 分析评估了一致性。fSENC和FT区分健康和HF的临界值分别为-19.3%和-15.1%。-15.8%(fSENC)和-10.8%(FT)的临界值进一步区分了轻度和重度DI。fSENC 和 FT 的 ROC 曲线下面积无明显差异。将 fSENC 作为参考,Bland-Altman 分析显示 FT 的偏差为 -4.01%,95% CI -4.42,-3.50。线性回归结果表明,将 fSENC 导出的 LV-GLS 与 FT 进行比例调整的因子为 0.76。将这一因子用于 fSENC 导出的临界值,得到的 FT LV-GLS 临界值的重定标分别为-14.7%(健康 vs. HF)和-12%(轻度 vs. 重度 DI):结论:LV-GLS 能高度准确地区分健康与 HF。每种测量技术都需要不同的临界值,但重定向因子有助于转换。基于 FT 的 LV-GLS ≥ -15% 简化了临床常规中的心房颤动检测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
How to address the coronaries in TAVI candidates: can the need for revascularization be safely determined by CT angiography only? Feasibility validation of automatic diagnosis of mitral valve prolapse from multi-view echocardiographic sequences based on deep neural network. Deep learning improves test-retest reproducibility of regional strain in echocardiography. HoloPatch: improving intracardiac patch fit through holographically modelled templates. Issue at a glance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1