A Lab-Scale Evaluation of Parameters Influencing the Mechanical Activation of Kaolin Using the Design of Experiments.

IF 3.1 3区 材料科学 Q3 CHEMISTRY, PHYSICAL Materials Pub Date : 2024-09-23 DOI:10.3390/ma17184651
Jofre Mañosa, Adrian Alvarez-Coscojuela, Alex Maldonado-Alameda, Josep Maria Chimenos
{"title":"A Lab-Scale Evaluation of Parameters Influencing the Mechanical Activation of Kaolin Using the Design of Experiments.","authors":"Jofre Mañosa, Adrian Alvarez-Coscojuela, Alex Maldonado-Alameda, Josep Maria Chimenos","doi":"10.3390/ma17184651","DOIUrl":null,"url":null,"abstract":"<p><p>This research investigates the mechanical activation of kaolin as a supplementary cementitious material at the laboratory scale, aiming to optimize milling parameters using the response surface methodology. The study evaluated the effects of rotation speed and milling time on the amorphous phase content, the reduction in crystalline kaolinite, and impurity incorporation into the activated clay through the Rietveld method. The results demonstrated that adjusting milling parameters effectively enhanced clay activation, which is crucial for its use in low-carbon cements. High rotation speeds (300/350 rpm) and prolonged grinding times (90/120 min) in a planetary ball mill increased the pozzolanic activity by boosting the formation of amorphous phases from kaolinite and illite and reducing the particle size. However, the results evidenced that intermediate milling parameters are sufficient for reaching substantial degrees of amorphization and pozzolanic activity, avoiding the need for intensive grinding. Exceedingly aggressive milling introduced impurities like ZrO<sub>2</sub> from the milling equipment wear, underscoring the need for a balanced approach to optimizing reactivity while minimizing impurities, energy consumption, and equipment wear. Achieving this balance is essential for efficient mechanical activation, ensuring the prepared clay's suitability as supplementary cementitious materials without excessive costs or compromised equipment integrity.</p>","PeriodicalId":18281,"journal":{"name":"Materials","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11433604/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/ma17184651","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This research investigates the mechanical activation of kaolin as a supplementary cementitious material at the laboratory scale, aiming to optimize milling parameters using the response surface methodology. The study evaluated the effects of rotation speed and milling time on the amorphous phase content, the reduction in crystalline kaolinite, and impurity incorporation into the activated clay through the Rietveld method. The results demonstrated that adjusting milling parameters effectively enhanced clay activation, which is crucial for its use in low-carbon cements. High rotation speeds (300/350 rpm) and prolonged grinding times (90/120 min) in a planetary ball mill increased the pozzolanic activity by boosting the formation of amorphous phases from kaolinite and illite and reducing the particle size. However, the results evidenced that intermediate milling parameters are sufficient for reaching substantial degrees of amorphization and pozzolanic activity, avoiding the need for intensive grinding. Exceedingly aggressive milling introduced impurities like ZrO2 from the milling equipment wear, underscoring the need for a balanced approach to optimizing reactivity while minimizing impurities, energy consumption, and equipment wear. Achieving this balance is essential for efficient mechanical activation, ensuring the prepared clay's suitability as supplementary cementitious materials without excessive costs or compromised equipment integrity.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用实验设计对影响高岭土机械活化的参数进行实验室规模的评估。
本研究在实验室规模上对作为水泥基补充材料的高岭土的机械活化进行了调查,旨在利用响应面方法优化碾磨参数。研究通过里特维尔德法评估了转速和研磨时间对无定形相含量、结晶高岭石减少量以及活化粘土中杂质掺入量的影响。结果表明,调整研磨参数可有效提高粘土活化,这对其在低碳水泥中的应用至关重要。行星式球磨机的高转速(300/350 转/分钟)和延长研磨时间(90/120 分钟)可促进高岭石和伊利石非晶相的形成并减小颗粒尺寸,从而提高其水胶合活性。不过,研究结果表明,中等研磨参数足以达到相当程度的非晶化和水胶活性,从而避免了高强度研磨。过度强力研磨会引入研磨设备磨损产生的 ZrO2 等杂质,这说明需要采用一种平衡的方法来优化反应活性,同时尽量减少杂质、能耗和设备磨损。实现这种平衡对高效机械活化至关重要,可确保制备的粘土适合用作胶凝补充材料,同时不会产生过高的成本或损害设备的完整性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Materials
Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
5.80
自引率
14.70%
发文量
7753
审稿时长
1.2 months
期刊介绍: Materials (ISSN 1996-1944) is an open access journal of related scientific research and technology development. It publishes reviews, regular research papers (articles) and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Materials provides a forum for publishing papers which advance the in-depth understanding of the relationship between the structure, the properties or the functions of all kinds of materials. Chemical syntheses, chemical structures and mechanical, chemical, electronic, magnetic and optical properties and various applications will be considered.
期刊最新文献
A Lab-Scale Evaluation of Parameters Influencing the Mechanical Activation of Kaolin Using the Design of Experiments. Investigation of MO Adsorption Kinetics and Photocatalytic Degradation Utilizing Hollow Fibers of Cu-CuO/TiO2 Nanocomposite. Use of Milled Acanthocardia tuberculate Seashell as Fine Aggregate in Self-Compacting Mortars. Enhanced Cyclically Stable Plasticity Model for Multiaxial Behaviour of Magnesium Alloy AZ31 under Low-Cycle Fatigue Conditions. Enhancing the Mechanical Properties of AM60B Magnesium Alloys through Graphene Addition: Characterization and Regression Analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1