Catalytic Ozonation Treatment of Coal Chemical Reverse Osmosis Concentrate: Water Quality Analysis, Parameter Optimization, and Catalyst Deactivation Investigation.
Yihe Qin, Run Yuan, Shaozhou Wang, Xuewei Zhang, Shaojun Luo, Xuwen He
{"title":"Catalytic Ozonation Treatment of Coal Chemical Reverse Osmosis Concentrate: Water Quality Analysis, Parameter Optimization, and Catalyst Deactivation Investigation.","authors":"Yihe Qin, Run Yuan, Shaozhou Wang, Xuewei Zhang, Shaojun Luo, Xuwen He","doi":"10.3390/toxics12090681","DOIUrl":null,"url":null,"abstract":"<p><p>Catalytic ozone oxidation, which is characterized by strong oxidizing properties and environmental friendliness, has been widely used in organic wastewater treatments. However, problems such as a low organic pollutant removal efficiency and unstable operation during the catalytic ozone treatment process for wastewater remain. To address these disadvantages, in this study, the treatment efficacy of catalytic ozone oxidation on a coal chemical reverse osmosis concentrate was investigated. The basic water quality indicators of the chemical reverse osmosis concentrate were analyzed. The effects of initial pollutant concentration, pH, ozone concentration, and catalyst concentration on the COD removal rate from the coal chemical reverse osmosis concentrate were explored. Water quality indicators of the chemical reverse osmosis concentrate before and after the catalytic ozone treatment were studied using spectroscopic analysis methods. The RO concentrate demonstrated large water quality fluctuations, and the catalytic ozonation process removed most of the pollutants from the treated wastewater. A possible deactivation mechanism of the ozone catalyst was also proposed. This study provides a theoretical reference and technical support for the long-term, efficient, and stable removal of organic pollutants from coal chemical reverse osmosis concentrate using a catalytic ozone oxidation process in practical engineering applications.</p>","PeriodicalId":23195,"journal":{"name":"Toxics","volume":"12 9","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11435963/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxics","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.3390/toxics12090681","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Catalytic ozone oxidation, which is characterized by strong oxidizing properties and environmental friendliness, has been widely used in organic wastewater treatments. However, problems such as a low organic pollutant removal efficiency and unstable operation during the catalytic ozone treatment process for wastewater remain. To address these disadvantages, in this study, the treatment efficacy of catalytic ozone oxidation on a coal chemical reverse osmosis concentrate was investigated. The basic water quality indicators of the chemical reverse osmosis concentrate were analyzed. The effects of initial pollutant concentration, pH, ozone concentration, and catalyst concentration on the COD removal rate from the coal chemical reverse osmosis concentrate were explored. Water quality indicators of the chemical reverse osmosis concentrate before and after the catalytic ozone treatment were studied using spectroscopic analysis methods. The RO concentrate demonstrated large water quality fluctuations, and the catalytic ozonation process removed most of the pollutants from the treated wastewater. A possible deactivation mechanism of the ozone catalyst was also proposed. This study provides a theoretical reference and technical support for the long-term, efficient, and stable removal of organic pollutants from coal chemical reverse osmosis concentrate using a catalytic ozone oxidation process in practical engineering applications.
ToxicsChemical Engineering-Chemical Health and Safety
CiteScore
4.50
自引率
10.90%
发文量
681
审稿时长
6 weeks
期刊介绍:
The Journal accepts papers describing work that furthers our understanding of the exposure, effects, and risks of chemicals and materials in humans and the natural environment as well as approaches to assess and/or manage the toxicological and ecotoxicological risks of chemicals and materials. The journal covers a wide range of toxic substances, including metals, pesticides, pharmaceuticals, biocides, nanomaterials, and polymers such as micro- and mesoplastics. Toxics accepts papers covering:
The occurrence, transport, and fate of chemicals and materials in different systems (e.g., food, air, water, soil);
Exposure of humans and the environment to toxic chemicals and materials as well as modelling and experimental approaches for characterizing the exposure in, e.g., water, air, soil, food, and consumer products;
Uptake, metabolism, and effects of chemicals and materials in a wide range of systems including in-vitro toxicological assays, aquatic and terrestrial organisms and ecosystems, model mammalian systems, and humans;
Approaches to assess the risks of chemicals and materials to humans and the environment;
Methodologies to eliminate or reduce the exposure of humans and the environment to toxic chemicals and materials.