scDAPP: a comprehensive single-cell transcriptomics analysis pipeline optimized for cross-group comparison.

IF 4 Q1 GENETICS & HEREDITY NAR Genomics and Bioinformatics Pub Date : 2024-09-28 eCollection Date: 2024-09-01 DOI:10.1093/nargab/lqae134
Alexander Ferrena, Xiang Yu Zheng, Kevyn Jackson, Bang Hoang, Bernice E Morrow, Deyou Zheng
{"title":"scDAPP: a comprehensive single-cell transcriptomics analysis pipeline optimized for cross-group comparison.","authors":"Alexander Ferrena, Xiang Yu Zheng, Kevyn Jackson, Bang Hoang, Bernice E Morrow, Deyou Zheng","doi":"10.1093/nargab/lqae134","DOIUrl":null,"url":null,"abstract":"<p><p>Single-cell transcriptomics profiling has increasingly been used to evaluate cross-group (or condition) differences in cell population and cell-type gene expression. This often leads to large datasets with complex experimental designs that need advanced comparative analysis. Concurrently, bioinformatics software and analytic approaches also become more diverse and constantly undergo improvement. Thus, there is an increased need for automated and standardized data processing and analysis pipelines, which should be efficient and flexible too. To address these, we develop the <b>s</b>ingle-<b>c</b>ell <b>D</b>ifferential <b>A</b>nalysis and <b>P</b>rocessing <b>P</b>ipeline (scDAPP), a R-based workflow for comparative analysis of single cell (or nucleus) transcriptomic data between two or more groups and at the levels of single cells or 'pseudobulking' samples. The pipeline automates many steps of pre-processing using data-learnt parameters, uses previously benchmarked software, and generates comprehensive intermediate data and final results that are valuable for both beginners and experts of scRNA-seq analysis. Moreover, the analytic reports, augmented by extensive data visualization, increase the transparency of computational analysis and parameter choices, while facilitate users to go seamlessly from raw data to biological interpretation. scDAPP is freely available under the MIT license, with source code, documentation and sample data at the GitHub (https://github.com/bioinfoDZ/scDAPP).</p>","PeriodicalId":33994,"journal":{"name":"NAR Genomics and Bioinformatics","volume":"6 4","pages":"lqae134"},"PeriodicalIF":4.0000,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11437360/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NAR Genomics and Bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/nargab/lqae134","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

Single-cell transcriptomics profiling has increasingly been used to evaluate cross-group (or condition) differences in cell population and cell-type gene expression. This often leads to large datasets with complex experimental designs that need advanced comparative analysis. Concurrently, bioinformatics software and analytic approaches also become more diverse and constantly undergo improvement. Thus, there is an increased need for automated and standardized data processing and analysis pipelines, which should be efficient and flexible too. To address these, we develop the single-cell Differential Analysis and Processing Pipeline (scDAPP), a R-based workflow for comparative analysis of single cell (or nucleus) transcriptomic data between two or more groups and at the levels of single cells or 'pseudobulking' samples. The pipeline automates many steps of pre-processing using data-learnt parameters, uses previously benchmarked software, and generates comprehensive intermediate data and final results that are valuable for both beginners and experts of scRNA-seq analysis. Moreover, the analytic reports, augmented by extensive data visualization, increase the transparency of computational analysis and parameter choices, while facilitate users to go seamlessly from raw data to biological interpretation. scDAPP is freely available under the MIT license, with source code, documentation and sample data at the GitHub (https://github.com/bioinfoDZ/scDAPP).

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
scDAPP:为跨组比较而优化的综合性单细胞转录组学分析管道。
单细胞转录组学分析越来越多地被用于评估细胞群和细胞类型基因表达的跨组(或条件)差异。这通常会产生具有复杂实验设计的大型数据集,需要进行高级比较分析。与此同时,生物信息学软件和分析方法也变得更加多样化,并不断改进。因此,对自动化和标准化数据处理与分析管道的需求越来越大,而且这些管道还必须高效灵活。为了解决这些问题,我们开发了单细胞差异分析和处理管道(scDAPP),这是一种基于 R 的工作流程,用于在单细胞或 "伪堆积 "样本水平上比较分析两组或多组之间的单细胞(或细胞核)转录组数据。该流水线使用从数据中获取的参数自动完成许多预处理步骤,使用以前的基准软件,生成全面的中间数据和最终结果,对 scRNA-seq 分析的初学者和专家都很有价值。此外,通过大量的数据可视化,分析报告增加了计算分析和参数选择的透明度,同时方便用户从原始数据到生物学解释的无缝衔接。scDAPP 在 MIT 许可下免费提供,源代码、文档和样本数据可在 GitHub (https://github.com/bioinfoDZ/scDAPP) 上获取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.00
自引率
2.20%
发文量
95
审稿时长
15 weeks
期刊最新文献
Phenotype prediction in plants is improved by integrating large-scale transcriptomic datasets. AntiBody Sequence Database. Approximate nearest neighbor graph provides fast and efficient embedding with applications for large-scale biological data. Cell- and tissue-specific glycosylation pathways informed by single-cell transcriptomics. HiCrayon reveals distinct layers of multi-state 3D chromatin organization.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1