Dual-energy CT: Impact of detecting bone marrow oedema in occult trauma in the Emergency.

BJR open Pub Date : 2024-09-11 eCollection Date: 2024-01-01 DOI:10.1093/bjro/tzae025
Muhammad Israr Ahmad, Lulu Liu, Adnan Sheikh, Savvas Nicolaou
{"title":"Dual-energy CT: Impact of detecting bone marrow oedema in occult trauma in the Emergency.","authors":"Muhammad Israr Ahmad, Lulu Liu, Adnan Sheikh, Savvas Nicolaou","doi":"10.1093/bjro/tzae025","DOIUrl":null,"url":null,"abstract":"<p><p>Dual-energy computed tomography (DECT) is an advanced imaging technique that acquires data using two distinct X-ray energy spectra, typically at 80 and 140 kVp, to differentiate materials based on their atomic number and electron density. This capability allows for the enhanced visualisation of various pathologies, including bone marrow oedema (BMO), by providing high-resolution images with notable energy spectral separation while maintaining radiation doses comparable to conventional CT. DECT's ability to create colour-coded virtual non-calcium (VNCa) images has proven particularly valuable in detecting traumatic bone marrow lesions (BMLs) and subtle fractures, offering a reliable alternative or complement to MRI. DECT has emerged as a significant tool in the detection and characterisation of bone marrow pathologies, especially in traumatic injuries. Its ability to generate high-resolution images and distinguish between different tissue types makes it a valuable asset in clinical diagnostics. With its comparable diagnostic accuracy to MRI and the added advantage of reduced examination time and increased availability, DECT represents a promising advancement in the imaging of BMO and related conditions.</p>","PeriodicalId":72419,"journal":{"name":"BJR open","volume":"6 1","pages":"tzae025"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11427222/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BJR open","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bjro/tzae025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Dual-energy computed tomography (DECT) is an advanced imaging technique that acquires data using two distinct X-ray energy spectra, typically at 80 and 140 kVp, to differentiate materials based on their atomic number and electron density. This capability allows for the enhanced visualisation of various pathologies, including bone marrow oedema (BMO), by providing high-resolution images with notable energy spectral separation while maintaining radiation doses comparable to conventional CT. DECT's ability to create colour-coded virtual non-calcium (VNCa) images has proven particularly valuable in detecting traumatic bone marrow lesions (BMLs) and subtle fractures, offering a reliable alternative or complement to MRI. DECT has emerged as a significant tool in the detection and characterisation of bone marrow pathologies, especially in traumatic injuries. Its ability to generate high-resolution images and distinguish between different tissue types makes it a valuable asset in clinical diagnostics. With its comparable diagnostic accuracy to MRI and the added advantage of reduced examination time and increased availability, DECT represents a promising advancement in the imaging of BMO and related conditions.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
双能 CT:在急诊中检测隐性创伤中骨髓水肿的影响。
双能计算机断层扫描(DECT)是一种先进的成像技术,它利用两种不同的 X 射线能谱(通常为 80 kVp 和 140 kVp)获取数据,根据原子序数和电子密度对材料进行区分。这种功能通过提供高分辨率图像和显著的能谱分离,同时保持与传统 CT 相当的辐射剂量,从而增强了包括骨髓水肿 (BMO) 在内的各种病变的可视化。事实证明,DECT 能够生成彩色编码的虚拟非钙(VNCa)图像,在检测外伤性骨髓病变(BML)和细微骨折方面特别有价值,可作为核磁共振成像的可靠替代或补充。DECT 已成为检测和描述骨髓病变,尤其是创伤性骨髓病变的重要工具。DECT 能够生成高分辨率图像并区分不同的组织类型,这使其成为临床诊断的宝贵财富。DECT 的诊断准确性可与核磁共振相媲美,而且还具有缩短检查时间和提高可用性的优势,是骨髓造影和相关疾病成像领域的一大进步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
18 weeks
期刊最新文献
Artificial intelligence research in radiation oncology: a practical guide for the clinician on concepts and methods. Application of CT-based foundational artificial intelligence and radiomics models for prediction of survival for lung cancer patients treated on the NRG/RTOG 0617 clinical trial. Measuring brain perfusion by CT or MR as ancillary tests for diagnosis of brain death: a systematic review and meta-analysis. Post-mortem CT service structures in non-suspicious death investigations. Coronary stent imaging in photon counting computed tomography: improved imaging of in-stent stenoses in a phantom with optimized reconstruction kernels.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1