Megan Ford, Paul J Thomson, Jan Snoeys, Xiaoli Meng, Dean J Naisbitt
{"title":"Selective HLA Class II Allele-Restricted Activation of Atabecestat Metabolite-Specific Human T-Cells.","authors":"Megan Ford, Paul J Thomson, Jan Snoeys, Xiaoli Meng, Dean J Naisbitt","doi":"10.1021/acs.chemrestox.4c00262","DOIUrl":null,"url":null,"abstract":"<p><p>Elevations in hepatic enzymes were detected in several trial patients exposed to the Alzheimer's drug atabecestat, which resulted in termination of the drug development program. Characterization of hepatic T-lymphocyte infiltrates and diaminothiazine (DIAT) metabolite-responsive, human leukocyte antigen (HLA)-DR-restricted, CD4+ T-lymphocytes in the blood of patients confirmed an immune pathogenesis. Patients with immune-mediated liver injury expressed a restricted panel of HLA-DRB1 alleles including HLA-DRB1*12:01, HLA-DRB1*13:02, and HLA-DRB1*15:01. Thus, the objectives of this study were to (i) generate DIAT-responsive T-cell clones from HLA-genotyped drug-naive donors, (ii) characterize pathways of DIAT-specific T-cell activation, and (iii) assess HLA allele restriction of the DIAT-specific T-cell response. Sixteen drug-naive donors expressing the HLA-DR molecules outlined above were recruited, and T-cell clones were generated. Cellular phenotype, function, and HLA-allele restriction were assessed using culture assays. Peptides displayed by HLA class II molecules in the presence and absence of atabecestat were analyzed by mass spectrometry. Several DIAT-responsive CD4+ clones, displaying no reactivity toward the parent drug, were successfully generated from donors expressing HLA-DRB1*12:01, HLA-DRB1*13:02, and HLA-DRB1*15:01 but not from other donors expressing other HLA-DRB1 alleles. T-cell clones were activated following direct binding of DIAT to HLA-DR proteins expressed on the surface of antigen presenting cells. DIAT binding did not alter the HLA-DRB1 peptide binding repertoire, indicative of a binding interaction with the HLA-associated peptide rather than with the HLA protein itself. DIAT-specific T-cell responses displayed HLA-DRB1*12:01, HLA-DRB1*13:02, and HLA-DRB1*15:01 restriction. These data demonstrate that DIAT displays a degree of selectivity toward HLA protein and associated peptides, with expression of certain alleles increasing and that of others decreasing, the likelihood that a drug-specific T-cell response develops.</p>","PeriodicalId":31,"journal":{"name":"Chemical Research in Toxicology","volume":" ","pages":"1712-1727"},"PeriodicalIF":3.7000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11497358/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Research in Toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acs.chemrestox.4c00262","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/30 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Elevations in hepatic enzymes were detected in several trial patients exposed to the Alzheimer's drug atabecestat, which resulted in termination of the drug development program. Characterization of hepatic T-lymphocyte infiltrates and diaminothiazine (DIAT) metabolite-responsive, human leukocyte antigen (HLA)-DR-restricted, CD4+ T-lymphocytes in the blood of patients confirmed an immune pathogenesis. Patients with immune-mediated liver injury expressed a restricted panel of HLA-DRB1 alleles including HLA-DRB1*12:01, HLA-DRB1*13:02, and HLA-DRB1*15:01. Thus, the objectives of this study were to (i) generate DIAT-responsive T-cell clones from HLA-genotyped drug-naive donors, (ii) characterize pathways of DIAT-specific T-cell activation, and (iii) assess HLA allele restriction of the DIAT-specific T-cell response. Sixteen drug-naive donors expressing the HLA-DR molecules outlined above were recruited, and T-cell clones were generated. Cellular phenotype, function, and HLA-allele restriction were assessed using culture assays. Peptides displayed by HLA class II molecules in the presence and absence of atabecestat were analyzed by mass spectrometry. Several DIAT-responsive CD4+ clones, displaying no reactivity toward the parent drug, were successfully generated from donors expressing HLA-DRB1*12:01, HLA-DRB1*13:02, and HLA-DRB1*15:01 but not from other donors expressing other HLA-DRB1 alleles. T-cell clones were activated following direct binding of DIAT to HLA-DR proteins expressed on the surface of antigen presenting cells. DIAT binding did not alter the HLA-DRB1 peptide binding repertoire, indicative of a binding interaction with the HLA-associated peptide rather than with the HLA protein itself. DIAT-specific T-cell responses displayed HLA-DRB1*12:01, HLA-DRB1*13:02, and HLA-DRB1*15:01 restriction. These data demonstrate that DIAT displays a degree of selectivity toward HLA protein and associated peptides, with expression of certain alleles increasing and that of others decreasing, the likelihood that a drug-specific T-cell response develops.
期刊介绍:
Chemical Research in Toxicology publishes Articles, Rapid Reports, Chemical Profiles, Reviews, Perspectives, Letters to the Editor, and ToxWatch on a wide range of topics in Toxicology that inform a chemical and molecular understanding and capacity to predict biological outcomes on the basis of structures and processes. The overarching goal of activities reported in the Journal are to provide knowledge and innovative approaches needed to promote intelligent solutions for human safety and ecosystem preservation. The journal emphasizes insight concerning mechanisms of toxicity over phenomenological observations. It upholds rigorous chemical, physical and mathematical standards for characterization and application of modern techniques.