Enzymatic Degradation toward Herbicides: The Case of the Sulfonylureas.

IF 10.8 1区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL 环境科学与技术 Pub Date : 2024-11-12 Epub Date: 2024-10-01 DOI:10.1021/acs.est.4c04929
Mingna Zheng, Yanwei Li, Qingzhu Zhang, Wenxing Wang
{"title":"Enzymatic Degradation toward Herbicides: The Case of the Sulfonylureas.","authors":"Mingna Zheng, Yanwei Li, Qingzhu Zhang, Wenxing Wang","doi":"10.1021/acs.est.4c04929","DOIUrl":null,"url":null,"abstract":"<p><p>Commercial herbicides, particularly sulfonylureas, are used worldwide and pose a significant challenge to environmental sustainability. The efficient degradation of sulfonylurea herbicides is critical. SulE, an esterase isolated from the bacterial strain <i>Hansschlegelia zhihuaiae</i> S113, shows degradation activity toward sulfonylurea herbicides. However, the detailed catalytic mechanism remains vague to a large extent. Herein, we decipher the SulE<sup>P44R</sup>-catalyzed degradation mechanism of sulfonylurea herbicides using hybrid quantum mechanics and molecular mechanics approaches. Our results show that the degradation of sulfonylureas catalyzed by SulE<sup>P44R</sup> involves four concerted elementary steps. The rate-determining step has an energy barrier range of 19.7-21.4 kcal·mol<sup>-1</sup>, consistent with the experimentally determined range of 16.0-18.0 kcal·mol<sup>-1</sup>. Distortion/interaction analysis demonstrates that active-site amino acids play a vital role in the enzymatic catalytic efficacy. The unique architecture of SulE<sup>P44R</sup>'s active site can serve as an excellent template for designing artificial catalysts. Key structural and charge parameters affecting catalytic activity were systematically screened and identified. Based on the elucidated degradation mechanism, several new herbicides with both high herbicidal activity and biodegradability were developed with the aid of a high-throughput strategy. Our findings may advance the application of sulfonylurea herbicides within the framework of environmental sustainability.</p>","PeriodicalId":36,"journal":{"name":"环境科学与技术","volume":" ","pages":"20049-20059"},"PeriodicalIF":10.8000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"环境科学与技术","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.est.4c04929","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/1 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Commercial herbicides, particularly sulfonylureas, are used worldwide and pose a significant challenge to environmental sustainability. The efficient degradation of sulfonylurea herbicides is critical. SulE, an esterase isolated from the bacterial strain Hansschlegelia zhihuaiae S113, shows degradation activity toward sulfonylurea herbicides. However, the detailed catalytic mechanism remains vague to a large extent. Herein, we decipher the SulEP44R-catalyzed degradation mechanism of sulfonylurea herbicides using hybrid quantum mechanics and molecular mechanics approaches. Our results show that the degradation of sulfonylureas catalyzed by SulEP44R involves four concerted elementary steps. The rate-determining step has an energy barrier range of 19.7-21.4 kcal·mol-1, consistent with the experimentally determined range of 16.0-18.0 kcal·mol-1. Distortion/interaction analysis demonstrates that active-site amino acids play a vital role in the enzymatic catalytic efficacy. The unique architecture of SulEP44R's active site can serve as an excellent template for designing artificial catalysts. Key structural and charge parameters affecting catalytic activity were systematically screened and identified. Based on the elucidated degradation mechanism, several new herbicides with both high herbicidal activity and biodegradability were developed with the aid of a high-throughput strategy. Our findings may advance the application of sulfonylurea herbicides within the framework of environmental sustainability.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
除草剂的酶降解:磺酰脲类的案例。
商用除草剂,尤其是磺酰脲类除草剂,在全球范围内广泛使用,对环境的可持续发展构成了重大挑战。高效降解磺酰脲类除草剂至关重要。SulE 是一种从细菌菌株 Hansschlegelia zhihuaiae S113 中分离出来的酯酶,具有降解磺酰脲类除草剂的活性。然而,详细的催化机理在很大程度上仍然模糊不清。在此,我们利用量子力学和分子力学的混合方法破译了 SulEP44R 催化磺酰脲类除草剂的降解机制。我们的研究结果表明,SulEP44R 催化的磺酰脲类除草剂降解过程涉及四个协同的基本步骤。速率决定步骤的能障范围为 19.7-21.4 kcal-mol-1,与实验测定的 16.0-18.0 kcal-mol-1 范围一致。畸变/相互作用分析表明,活性位点氨基酸对酶的催化效率起着至关重要的作用。SulEP44R 活性位点的独特结构可作为设计人工催化剂的绝佳模板。我们系统地筛选并鉴定了影响催化活性的关键结构和电荷参数。在阐明降解机理的基础上,利用高通量策略开发出了几种具有高除草活性和生物降解性的新型除草剂。我们的发现可能会推动磺酰脲类除草剂在环境可持续发展框架内的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
环境科学与技术
环境科学与技术 环境科学-工程:环境
CiteScore
17.50
自引率
9.60%
发文量
12359
审稿时长
2.8 months
期刊介绍: Environmental Science & Technology (ES&T) is a co-sponsored academic and technical magazine by the Hubei Provincial Environmental Protection Bureau and the Hubei Provincial Academy of Environmental Sciences. Environmental Science & Technology (ES&T) holds the status of Chinese core journals, scientific papers source journals of China, Chinese Science Citation Database source journals, and Chinese Academic Journal Comprehensive Evaluation Database source journals. This publication focuses on the academic field of environmental protection, featuring articles related to environmental protection and technical advancements.
期刊最新文献
Enhanced Nonagricultural Emissions of Ammonia Influence Aerosol Ammonium in an Urban Atmosphere: Evidence from Kinetic Versus Equilibrium Isotope Fractionation Controls on Nitrogen UV-Aged Nanoplastics Increase Mercury Toxicity in a Marine Copepod under Multigenerational Exposure: A Carrier Role Identification of Novel Iodinated Polyfluoroalkyl Ether Acids and Other Emerging PFAS in Soils Using a Nontargeted Molecular Network Approach Effect of Reaction Interface Structure on the Morphology and Performance of Thin-Film Composite Membrane Molecular Mechanisms of Humic Acid in Inhibiting Silica Scaling during Membrane Distillation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1