Conformational Changes and Coordination Stability of Flexible Tripeptides During Ni(II)-mediated Self-assembly.

IF 3 4区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY ChemPlusChem Pub Date : 2024-09-30 DOI:10.1002/cplu.202400536
Dapeng Zhang, Naoki Kishimoto, Ryosuke Miyake
{"title":"Conformational Changes and Coordination Stability of Flexible Tripeptides During Ni(II)-mediated Self-assembly.","authors":"Dapeng Zhang, Naoki Kishimoto, Ryosuke Miyake","doi":"10.1002/cplu.202400536","DOIUrl":null,"url":null,"abstract":"<p><p>The rational design of artificial supramolecular structures with specific properties and functions hinges the comprehensive understanding of the coordination and noncovalent interactions driving self-assembly. Herein, the self-assembly of supramolecular systems through octahedral coordination between Ni(II) ions and a flexible tripeptide was theoretically investigated using quantum chemical calculations. These calculations utilized the B3LYP functional with the polarizable continuum model. Our results indicate that tridentate sites have a greater propensity for coordination, and that the presence of chloride anions and conformational shifts enhance bidentate and monodentate coordination. Insights into the effect of counter anions on the stability of octahedral coordination and the prerequisites for self-assembly were gained by determining the stable conformation and potential reaction pathways of the tripeptide before and after adding chloride anions through an efficient automated conformational search. The formation of intramolecular hydrogen bonding interactions during the conformational changes was also studied using model calculations. Possible processes for initial self-assembly of tripeptide were proposed. This study enhances the fundamental understanding of the conformational behavior of building blocks during supramolecular formation and advance the potential for constructing future bioinspired complexes.</p>","PeriodicalId":148,"journal":{"name":"ChemPlusChem","volume":" ","pages":"e202400536"},"PeriodicalIF":3.0000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemPlusChem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cplu.202400536","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The rational design of artificial supramolecular structures with specific properties and functions hinges the comprehensive understanding of the coordination and noncovalent interactions driving self-assembly. Herein, the self-assembly of supramolecular systems through octahedral coordination between Ni(II) ions and a flexible tripeptide was theoretically investigated using quantum chemical calculations. These calculations utilized the B3LYP functional with the polarizable continuum model. Our results indicate that tridentate sites have a greater propensity for coordination, and that the presence of chloride anions and conformational shifts enhance bidentate and monodentate coordination. Insights into the effect of counter anions on the stability of octahedral coordination and the prerequisites for self-assembly were gained by determining the stable conformation and potential reaction pathways of the tripeptide before and after adding chloride anions through an efficient automated conformational search. The formation of intramolecular hydrogen bonding interactions during the conformational changes was also studied using model calculations. Possible processes for initial self-assembly of tripeptide were proposed. This study enhances the fundamental understanding of the conformational behavior of building blocks during supramolecular formation and advance the potential for constructing future bioinspired complexes.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Ni(II)介导的自组装过程中柔性三肽的构象变化和配位稳定性。
要合理设计具有特定性质和功能的人工超分子结构,就必须全面了解驱动自组装的配位和非共价相互作用。本文采用量子化学计算方法,从理论上研究了镍(II)离子与柔性三肽之间通过八面体配位实现超分子体系自组装的过程。这些计算采用了 B3LYP 函数和可极化连续模型。我们的结果表明,三叉位点具有更大的配位倾向,氯阴离子的存在和构象转变增强了双叉和单叉配位。通过高效的自动构象搜索,我们确定了三肽在加入氯阴离子前后的稳定构象和潜在反应途径,从而深入了解了反阴离子对八面体配位稳定性的影响以及自组装的先决条件。此外,还通过模型计算研究了构象变化过程中分子内氢键相互作用的形成。提出了三肽最初自组装的可能过程。这项研究加深了对超分子形成过程中构件构象行为的基本理解,并为构建未来的生物启发复合物提供了更多可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ChemPlusChem
ChemPlusChem CHEMISTRY, MULTIDISCIPLINARY-
CiteScore
5.90
自引率
0.00%
发文量
200
审稿时长
1 months
期刊介绍: ChemPlusChem is a peer-reviewed, general chemistry journal that brings readers the very best in multidisciplinary research centering on chemistry. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies. Fully comprehensive in its scope, ChemPlusChem publishes articles covering new results from at least two different aspects (subfields) of chemistry or one of chemistry and one of another scientific discipline (one chemistry topic plus another one, hence the title ChemPlusChem). All suitable submissions undergo balanced peer review by experts in the field to ensure the highest quality, originality, relevance, significance, and validity.
期刊最新文献
Origin of Regioselectivity Inversion Tuned by Substrate Electronic Properties in Co(III)-Catalyzed Annulation of N-Chlorobenzamide with Alkenes. The Dual-Role of Benzothiadiazole Fluorophores for Enabling Electrofluorochromic and Electrochromic Devices. Modelling Lithium-ion Transport Properties in Sulfoxides and Sulfones with Polarizable Molecular Dynamics and NMR Spectroscopy. Why Including Solvation is Paramount: First-Principles Calculations of Electrochemical CO2 Reduction to CO on a Cu Electrocatalyst. Thermoresponsive Polymers as Viscosity Modifiers: Innovative Nanoarchitectures as Lubricant Additives.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1