{"title":"Contributions of the bacterial communities to the microcystin degradation and nutrient transformations during aerobic composting of algal sludge.","authors":"Hainan Wu, Jiahui Zhou, Sen Zhang, Yu Gao, Chengkai Wang, Haibing Cong, Shaoyuan Feng","doi":"10.1016/j.jenvman.2024.122559","DOIUrl":null,"url":null,"abstract":"<p><p>Aerobic composting is a useful method for managing and disposing of salvaged algal sludge. To optimize the composting process and improve compost quality, it is necessary to understand the functions and responses of microbial communities therein. This work studied the degradation process of organic matter and the assemblage of bacterial communities in algal sludge composting via 16S rRNA amplicon sequencing. The results showed that 77.08% of the microcystin was degraded during the thermophilic stage of composting, which was the main period for microcystin degradation. Bacterial community composition and diversity changed significantly during the composting, and gradually stabilized as the compost matured. Different composting stages may be dominated by different module groups separately, as shown in the co-occurrence networks of composting bacterial communities. In the networks, all bacteria associated with microcystin degradation were identified as connectors between different module groups. The algal sludge composting process was driven primarily by deterministic processes, and the main driving forces for bacterial community assembly were temperature, dissolved organic carbon, ammonium, and microcystin. At last, by applying the structural equation modeling method, the bacterial communities under influences of physiochemical properties were proved as the main mediators for the microcystin degradation. This study provides valuable insights into the optimization of bacterial communities in composting to improve the efficiency of microcystin degradation and the quality of the compost product.</p>","PeriodicalId":356,"journal":{"name":"Journal of Environmental Management","volume":"370 ","pages":"122559"},"PeriodicalIF":8.0000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Management","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.jenvman.2024.122559","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/27 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Aerobic composting is a useful method for managing and disposing of salvaged algal sludge. To optimize the composting process and improve compost quality, it is necessary to understand the functions and responses of microbial communities therein. This work studied the degradation process of organic matter and the assemblage of bacterial communities in algal sludge composting via 16S rRNA amplicon sequencing. The results showed that 77.08% of the microcystin was degraded during the thermophilic stage of composting, which was the main period for microcystin degradation. Bacterial community composition and diversity changed significantly during the composting, and gradually stabilized as the compost matured. Different composting stages may be dominated by different module groups separately, as shown in the co-occurrence networks of composting bacterial communities. In the networks, all bacteria associated with microcystin degradation were identified as connectors between different module groups. The algal sludge composting process was driven primarily by deterministic processes, and the main driving forces for bacterial community assembly were temperature, dissolved organic carbon, ammonium, and microcystin. At last, by applying the structural equation modeling method, the bacterial communities under influences of physiochemical properties were proved as the main mediators for the microcystin degradation. This study provides valuable insights into the optimization of bacterial communities in composting to improve the efficiency of microcystin degradation and the quality of the compost product.
期刊介绍:
The Journal of Environmental Management is a journal for the publication of peer reviewed, original research for all aspects of management and the managed use of the environment, both natural and man-made.Critical review articles are also welcome; submission of these is strongly encouraged.