{"title":"Separator modification with a high-entropy hydroxyphosphate, Co<sub>0.29</sub>Ni<sub>0.15</sub>Fe<sub>0.33</sub>Cu<sub>0.16</sub>Ca<sub>3.9</sub>(PO<sub>4</sub>)<sub>3</sub>(OH), for high-performance Li-S batteries.","authors":"Xinyuan Wang, Yuxin Fan, Lei Xie, Huibing He, Guifang Wang, Jinliang Zhu","doi":"10.1016/j.jcis.2024.10.058","DOIUrl":null,"url":null,"abstract":"<p><p>The shuttle effect of lithium polysulfides (LiPSs) significantly hinders the practical application of lithium-sulfur batteries (LSBs). Herein, a high-entropy hydroxyphosphate (Co<sub>0.29</sub>Ni<sub>0.15</sub>Fe<sub>0.33</sub>Cu<sub>0.16</sub>Ca<sub>3.9</sub>(PO<sub>4</sub>)<sub>3</sub>(OH), denoted as HE-CHP), was synthesized by metal cation exchange with calcium hydroxyphosphate (CHP) and then coated on polypropylene (PP) separators to suppress the shuttling of LiPSs. Density functional theory calculations indicated that the various introduced metal cations could effectively modulate the binding strength of soluble polysulfides and enhance the reaction kinetics of LiPSs conversion. As a result, LSBs using the HE-CHP@PP separator exhibited an excellent discharge capacity (1297 mAh g<sup>-1</sup> under 0.2 C) and a slow capacity decay during long-term cycling (0.046 % per cycle at 2 C). At a sulfur loading of up to 6.5 mg cm<sup>-2</sup>, the LSB with HE-CHP@PP separator displayed a discharge capacity of 5.8 mAh cm<sup>-2</sup>. Notably, the CNT@S||Li Li-S pouch cell with HE-CHP modified separator delivered an initial energy density of 432 Wh kg<sup>-1</sup>.</p>","PeriodicalId":9,"journal":{"name":"ACS Catalysis ","volume":null,"pages":null},"PeriodicalIF":11.3000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Catalysis ","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.jcis.2024.10.058","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/12 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The shuttle effect of lithium polysulfides (LiPSs) significantly hinders the practical application of lithium-sulfur batteries (LSBs). Herein, a high-entropy hydroxyphosphate (Co0.29Ni0.15Fe0.33Cu0.16Ca3.9(PO4)3(OH), denoted as HE-CHP), was synthesized by metal cation exchange with calcium hydroxyphosphate (CHP) and then coated on polypropylene (PP) separators to suppress the shuttling of LiPSs. Density functional theory calculations indicated that the various introduced metal cations could effectively modulate the binding strength of soluble polysulfides and enhance the reaction kinetics of LiPSs conversion. As a result, LSBs using the HE-CHP@PP separator exhibited an excellent discharge capacity (1297 mAh g-1 under 0.2 C) and a slow capacity decay during long-term cycling (0.046 % per cycle at 2 C). At a sulfur loading of up to 6.5 mg cm-2, the LSB with HE-CHP@PP separator displayed a discharge capacity of 5.8 mAh cm-2. Notably, the CNT@S||Li Li-S pouch cell with HE-CHP modified separator delivered an initial energy density of 432 Wh kg-1.
期刊介绍:
ACS Catalysis is an esteemed journal that publishes original research in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. It offers broad coverage across diverse areas such as life sciences, organometallics and synthesis, photochemistry and electrochemistry, drug discovery and synthesis, materials science, environmental protection, polymer discovery and synthesis, and energy and fuels.
The scope of the journal is to showcase innovative work in various aspects of catalysis. This includes new reactions and novel synthetic approaches utilizing known catalysts, the discovery or modification of new catalysts, elucidation of catalytic mechanisms through cutting-edge investigations, practical enhancements of existing processes, as well as conceptual advances in the field. Contributions to ACS Catalysis can encompass both experimental and theoretical research focused on catalytic molecules, macromolecules, and materials that exhibit catalytic turnover.