Specific isolation and quantification of PD-L1 positive tumor derived exosomes for accurate breast cancer discrimination via aptamer-functionalized magnetic composites and SERS immunoassay.
Ning Su, Jin Zhang, Wei Liu, Haoyang Zheng, Mengran Li, Jiandong Zhao, Mingxia Gao, Xiangmin Zhang
{"title":"Specific isolation and quantification of PD-L1 positive tumor derived exosomes for accurate breast cancer discrimination via aptamer-functionalized magnetic composites and SERS immunoassay.","authors":"Ning Su, Jin Zhang, Wei Liu, Haoyang Zheng, Mengran Li, Jiandong Zhao, Mingxia Gao, Xiangmin Zhang","doi":"10.1016/j.talanta.2024.126956","DOIUrl":null,"url":null,"abstract":"<p><p>PD-L1 positive tumor derived exosomes (TEXs<sup>PD-L1</sup>) play a significant role in disease progression, tumor metastasis and cancer immunotherapy. However, the overlap of PD-L1 between TEXs and non-tumor derived exosomes (non-TEXs) restricts the specific isolation and quantification of TEX<sup>PD-L1</sup> from clinical samples. Herein, a new aptamer-functionalized and hydrophilic immunomagnetic substrate was designed by decorating generation 5 polyamidoamine dendrimers (G5 PAMAM), zwitterionic trimethylamine N-oxide (TMAO) and EpCAM (Epithelial cell adhesion molecule) aptamers on magnetic cores sequentially (Fe<sub>3</sub>O<sub>4</sub>@PAMAM@TMAO@Aptamer, named as FPTA) for rapid target and efficient capture of TEXs. The FPTA substrate gathered excellent characters of strong magnetic responsiveness of Fe<sub>3</sub>O<sub>4</sub>, abundant affinity sites of PAMAM, strong hydrophilicity of TMAO and enhanced affinity properties of EpCAM aptamers. Because of these advantages, FPTA can isolate TEXs quickly within 30min with high capture efficiency of 90.5 % ± 3.0 % and low nonspecific absorption of 8.2 % ± 2.0 % for non-TEXs. Furthermore, PD-L1 (Programmed cell death-ligand 1) positive TEXs (TEXs<sup>PD-L1</sup>) from the captured TEXs were recognized and quantitatively analyzed by utilizing SERS (surface-enhanced Raman spectroscopy) reporter molecules 4-NTP (4-Nitrothiophenol) on PD-L1 aptamers-functionalized gold immunoaffinity probe. The signal of TEXs<sup>PD-L1</sup> was converted to SERS signal of 4-NTP at 1344 cm<sup>-1</sup> which exhibited a linear correlation to concentration of TEXs<sup>PD-L1</sup>(R<sup>2</sup> = 0.9905). With these merits, this strategy was further applied to clinical plasma samples from breast cancer (BC) patients and healthy controls (HC), exhibited an excellent diagnosis accuracy with area under curve (AUC) of receiver operating characteristic (ROC) curve reaching 0.988. All these results demonstrate that the FPTA immunomagnetic substrate combined with SERS immunoaffinity probe may become a generic tool for specific isolation and quantitative analysis of PD-L1 positive tumor-derived exosomes in clinics.</p>","PeriodicalId":435,"journal":{"name":"Talanta","volume":"281 ","pages":"126956"},"PeriodicalIF":5.6000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Talanta","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.talanta.2024.126956","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/25 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
PD-L1 positive tumor derived exosomes (TEXsPD-L1) play a significant role in disease progression, tumor metastasis and cancer immunotherapy. However, the overlap of PD-L1 between TEXs and non-tumor derived exosomes (non-TEXs) restricts the specific isolation and quantification of TEXPD-L1 from clinical samples. Herein, a new aptamer-functionalized and hydrophilic immunomagnetic substrate was designed by decorating generation 5 polyamidoamine dendrimers (G5 PAMAM), zwitterionic trimethylamine N-oxide (TMAO) and EpCAM (Epithelial cell adhesion molecule) aptamers on magnetic cores sequentially (Fe3O4@PAMAM@TMAO@Aptamer, named as FPTA) for rapid target and efficient capture of TEXs. The FPTA substrate gathered excellent characters of strong magnetic responsiveness of Fe3O4, abundant affinity sites of PAMAM, strong hydrophilicity of TMAO and enhanced affinity properties of EpCAM aptamers. Because of these advantages, FPTA can isolate TEXs quickly within 30min with high capture efficiency of 90.5 % ± 3.0 % and low nonspecific absorption of 8.2 % ± 2.0 % for non-TEXs. Furthermore, PD-L1 (Programmed cell death-ligand 1) positive TEXs (TEXsPD-L1) from the captured TEXs were recognized and quantitatively analyzed by utilizing SERS (surface-enhanced Raman spectroscopy) reporter molecules 4-NTP (4-Nitrothiophenol) on PD-L1 aptamers-functionalized gold immunoaffinity probe. The signal of TEXsPD-L1 was converted to SERS signal of 4-NTP at 1344 cm-1 which exhibited a linear correlation to concentration of TEXsPD-L1(R2 = 0.9905). With these merits, this strategy was further applied to clinical plasma samples from breast cancer (BC) patients and healthy controls (HC), exhibited an excellent diagnosis accuracy with area under curve (AUC) of receiver operating characteristic (ROC) curve reaching 0.988. All these results demonstrate that the FPTA immunomagnetic substrate combined with SERS immunoaffinity probe may become a generic tool for specific isolation and quantitative analysis of PD-L1 positive tumor-derived exosomes in clinics.
期刊介绍:
Talanta provides a forum for the publication of original research papers, short communications, and critical reviews in all branches of pure and applied analytical chemistry. Papers are evaluated based on established guidelines, including the fundamental nature of the study, scientific novelty, substantial improvement or advantage over existing technology or methods, and demonstrated analytical applicability. Original research papers on fundamental studies, and on novel sensor and instrumentation developments, are encouraged. Novel or improved applications in areas such as clinical and biological chemistry, environmental analysis, geochemistry, materials science and engineering, and analytical platforms for omics development are welcome.
Analytical performance of methods should be determined, including interference and matrix effects, and methods should be validated by comparison with a standard method, or analysis of a certified reference material. Simple spiking recoveries may not be sufficient. The developed method should especially comprise information on selectivity, sensitivity, detection limits, accuracy, and reliability. However, applying official validation or robustness studies to a routine method or technique does not necessarily constitute novelty. Proper statistical treatment of the data should be provided. Relevant literature should be cited, including related publications by the authors, and authors should discuss how their proposed methodology compares with previously reported methods.