{"title":"An Investigation on Optical, Larvacidal and Cytotoxicity Analysis of Sulfanilic Acid Single Crystal for Optical and Biomedical Applications.","authors":"Punithavathi Manogaran, Thirupathy Jayapalan, Revathi Palanisamy","doi":"10.1007/s12013-024-01547-8","DOIUrl":null,"url":null,"abstract":"<p><p>Sulfanilic acid (SFA) crystal is well known as an effective material for photonic, electro-optical, harmonic generating and biomedical applications. A well-known nonlinear optical material, a high-quality SFA single crystal made utilizing the slow evaporation solution method (SEST) is the subject of this article. A 75 days development period yielded a transparent SFA single crystal measuring 5 × 5 × 2 mm<sup>3</sup>. The grown crystal used for different characterizations like Single crystal XRD used to find out the cell parameters. Fourier transforms infrared utilized to identify the band assignments. UV-Visible analysis used to detect the absorbance of the crystal and it is utilized for optical application. Photoluminescence studies utilized to recognize the excitation and emission of the grown crystal. Fluorescence used for determining the crystallinity and purity of the sample. The quantitative analysis is verified by using Elemental Dispersive Analysis by X-Rays. Scanning Electron Microscopy utilized to identify the structural and morphological characteristics. To the best of our knowledge, this paper is the first to provide the generated crystal that was used to analyze cytotoxicity and larvacidal activity. Assessment of larvicidal activity was used to ascertain the anti-malarial efficacy. We tested the items on MCF7-Human Breast cancer cell line and MCF7 Vero cells using the MTT Assay to identify the molecular basis of their cytotoxicity in vitro. Biological and optical are two areas that could benefit from the created crystal.</p>","PeriodicalId":510,"journal":{"name":"Cell Biochemistry and Biophysics","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Biochemistry and Biophysics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12013-024-01547-8","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Sulfanilic acid (SFA) crystal is well known as an effective material for photonic, electro-optical, harmonic generating and biomedical applications. A well-known nonlinear optical material, a high-quality SFA single crystal made utilizing the slow evaporation solution method (SEST) is the subject of this article. A 75 days development period yielded a transparent SFA single crystal measuring 5 × 5 × 2 mm3. The grown crystal used for different characterizations like Single crystal XRD used to find out the cell parameters. Fourier transforms infrared utilized to identify the band assignments. UV-Visible analysis used to detect the absorbance of the crystal and it is utilized for optical application. Photoluminescence studies utilized to recognize the excitation and emission of the grown crystal. Fluorescence used for determining the crystallinity and purity of the sample. The quantitative analysis is verified by using Elemental Dispersive Analysis by X-Rays. Scanning Electron Microscopy utilized to identify the structural and morphological characteristics. To the best of our knowledge, this paper is the first to provide the generated crystal that was used to analyze cytotoxicity and larvacidal activity. Assessment of larvicidal activity was used to ascertain the anti-malarial efficacy. We tested the items on MCF7-Human Breast cancer cell line and MCF7 Vero cells using the MTT Assay to identify the molecular basis of their cytotoxicity in vitro. Biological and optical are two areas that could benefit from the created crystal.
期刊介绍:
Cell Biochemistry and Biophysics (CBB) aims to publish papers on the nature of the biochemical and biophysical mechanisms underlying the structure, control and function of cellular systems
The reports should be within the framework of modern biochemistry and chemistry, biophysics and cell physiology, physics and engineering, molecular and structural biology. The relationship between molecular structure and function under investigation is emphasized.
Examples of subject areas that CBB publishes are:
· biochemical and biophysical aspects of cell structure and function;
· interactions of cells and their molecular/macromolecular constituents;
· innovative developments in genetic and biomolecular engineering;
· computer-based analysis of tissues, cells, cell networks, organelles, and molecular/macromolecular assemblies;
· photometric, spectroscopic, microscopic, mechanical, and electrical methodologies/techniques in analytical cytology, cytometry and innovative instrument design
For articles that focus on computational aspects, authors should be clear about which docking and molecular dynamics algorithms or software packages are being used as well as details on the system parameterization, simulations conditions etc. In addition, docking calculations (virtual screening, QSAR, etc.) should be validated either by experimental studies or one or more reliable theoretical cross-validation methods.