Transcription factor YY1 adversely governs ovarian granulosa cell growth in PCOS by transcription activation-mediated CDKN1C upregulation

IF 3.9 4区 生物学 Q1 GENETICS & HEREDITY Functional & Integrative Genomics Pub Date : 2024-09-25 DOI:10.1007/s10142-024-01448-2
Shitao Dong, Youbin Liu, Zhimin Yang
{"title":"Transcription factor YY1 adversely governs ovarian granulosa cell growth in PCOS by transcription activation-mediated CDKN1C upregulation","authors":"Shitao Dong,&nbsp;Youbin Liu,&nbsp;Zhimin Yang","doi":"10.1007/s10142-024-01448-2","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Polycystic ovary syndrome (PCOS) is a common endocrine and metabolic disease in women of childbearing age, making it imperative to explore more biomarkers for PCOS. Furthermore, previous studies have reported that cyclin dependent kinase inhibitor 1 C (CDKN1C) might be associated with PCOS progression. However, the molecular mechanism of CDKN1C involved in PCOS is poorly defined.</p><h3>Methods</h3><p>CDKN1C and Yin-Yang-1 (YY1) expression levels were determined using real-time quantitative polymerase chain reaction (RT-qPCR) and Western blot assay. Cell viability, proliferation, cell cycle progression, and cell apoptosis were analyzed using 3-(4, 5-dimethyl-2-thiazolyl)-2, 5-diphenyl-2-H-tetrazolium bromide (MTT), 5-ethynyl-2’-deoxyuridine (EdU), and flow cytometry assays. Caspase 3 activity was examined using a commercial kit. Binding between YY1 and CDKN1C promoter was predicted by JASPAR and verified using Chromatin immunoprecipitation (ChIP) and dual-luciferase reporter assays.</p><h3>Results</h3><p>CDKN1C and YY1 were highly expressed in PCOS granulosa cells (GCs). Furthermore, CDKN1C silencing could promote cell proliferation and cell cycle process and repress cell apoptosis in human ovarian granulosa cell line KGN cells. For mechanistic analysis, YY1 is directly bound to the promoter of CDKN1C and transcriptional-regulated CDKN1C expression.</p><h3>Conclusion</h3><p>YY1-activated CDKN1C might block KGN cell proliferation and induce cell apoptosis, providing a possible therapeutic target for PCOS treatment.</p></div>","PeriodicalId":574,"journal":{"name":"Functional & Integrative Genomics","volume":"24 5","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Functional & Integrative Genomics","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s10142-024-01448-2","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

Background

Polycystic ovary syndrome (PCOS) is a common endocrine and metabolic disease in women of childbearing age, making it imperative to explore more biomarkers for PCOS. Furthermore, previous studies have reported that cyclin dependent kinase inhibitor 1 C (CDKN1C) might be associated with PCOS progression. However, the molecular mechanism of CDKN1C involved in PCOS is poorly defined.

Methods

CDKN1C and Yin-Yang-1 (YY1) expression levels were determined using real-time quantitative polymerase chain reaction (RT-qPCR) and Western blot assay. Cell viability, proliferation, cell cycle progression, and cell apoptosis were analyzed using 3-(4, 5-dimethyl-2-thiazolyl)-2, 5-diphenyl-2-H-tetrazolium bromide (MTT), 5-ethynyl-2’-deoxyuridine (EdU), and flow cytometry assays. Caspase 3 activity was examined using a commercial kit. Binding between YY1 and CDKN1C promoter was predicted by JASPAR and verified using Chromatin immunoprecipitation (ChIP) and dual-luciferase reporter assays.

Results

CDKN1C and YY1 were highly expressed in PCOS granulosa cells (GCs). Furthermore, CDKN1C silencing could promote cell proliferation and cell cycle process and repress cell apoptosis in human ovarian granulosa cell line KGN cells. For mechanistic analysis, YY1 is directly bound to the promoter of CDKN1C and transcriptional-regulated CDKN1C expression.

Conclusion

YY1-activated CDKN1C might block KGN cell proliferation and induce cell apoptosis, providing a possible therapeutic target for PCOS treatment.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
转录因子 YY1 通过转录激活介导的 CDKN1C 上调,对多囊卵巢综合征的卵巢颗粒细胞生长产生不利影响。
背景:多囊卵巢综合征(PCOS)是育龄妇女常见的内分泌和代谢疾病,因此探索更多的多囊卵巢综合征生物标志物势在必行。此外,之前有研究报告称,细胞周期蛋白依赖性激酶抑制剂 1 C(CDKN1C)可能与多囊卵巢综合征的进展有关。然而,CDKN1C参与多囊卵巢综合症的分子机制尚未明确:方法:采用实时定量聚合酶链式反应(RT-qPCR)和 Western 印迹法测定 CDKN1C 和阴阳-1(YY1)的表达水平。使用 3-(4,5-二甲基-2-噻唑基)-2,5-二苯基-2-H-溴化四氮唑(MTT)、5-乙炔基-2'-脱氧尿苷(EdU)和流式细胞仪分析细胞活力、增殖、细胞周期进展和细胞凋亡。使用商业试剂盒检测 Caspase 3 的活性。通过 JASPAR 预测了 YY1 与 CDKN1C 启动子之间的结合,并使用染色质免疫沉淀(ChIP)和双荧光素酶报告实验进行了验证:结果:CDKN1C和YY1在多囊卵巢综合征颗粒细胞(GCs)中高表达。此外,在人卵巢颗粒细胞系 KGN 细胞中,CDKN1C 沉默可促进细胞增殖和细胞周期进程,抑制细胞凋亡。在机理分析方面,YY1直接与CDKN1C的启动子结合并转录调控CDKN1C的表达:结论:YY1激活CDKN1C可能会阻止KGN细胞增殖并诱导细胞凋亡,为治疗多囊卵巢综合征提供了一个可能的治疗靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.50
自引率
3.40%
发文量
92
审稿时长
2 months
期刊介绍: Functional & Integrative Genomics is devoted to large-scale studies of genomes and their functions, including systems analyses of biological processes. The journal will provide the research community an integrated platform where researchers can share, review and discuss their findings on important biological questions that will ultimately enable us to answer the fundamental question: How do genomes work?
期刊最新文献
The role of disulfidptosis-associated LncRNA-LINC01137 in Osteosarcoma Biology and its regulatory effects on macrophage polarization Breaking the yield-quality tradeoff: OsNLP3 in rice Non-coding RNA notations, regulations and interactive resources Can nanotechnology and genomics innovations trigger agricultural revolution and sustainable development? Time-course RNA sequencing reveals high similarity in mRNAome between hepatic stellate cells activated by agalactosyl IgG and TGF-β1
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1