Conduction in heterogeneous systems in the low-frequency regime: variational principles and boundary integral equations

IF 1.8 4区 物理与天体物理 Q4 CHEMISTRY, PHYSICAL The European Physical Journal E Pub Date : 2024-09-27 DOI:10.1140/epje/s10189-024-00449-0
Francisco J. Solis, Vikram Jadhao
{"title":"Conduction in heterogeneous systems in the low-frequency regime: variational principles and boundary integral equations","authors":"Francisco J. Solis,&nbsp;Vikram Jadhao","doi":"10.1140/epje/s10189-024-00449-0","DOIUrl":null,"url":null,"abstract":"<p>The response of a homogeneous material to the presence of an external low-frequency oscillating electric field can be described by means of an effective complex conductivity. Low frequencies are characterized by negligible magnetic and radiative effects. The properties of heterogeneous systems, composed of multiple homogeneous regions, can be determined from those of the individual components and their geometric arrangement. Examples of such heterogeneous systems include soft materials such as colloidal suspensions, electrolyte systems, and biological tissues. The difference in the intrinsic conductivities between the homogeneous regions leads to the creation of an oscillating charge density localized at the interfaces between these regions. We show how to express key properties of these systems using this dynamic charge as a fundamental variable. We derive a boundary integral equation for the charges and reconstruct potentials and fields from its solution. We present a variational principle that recovers the fundamental equations for the system in terms of the oscillating charge and show that, in some formulations, the associated functional can be interpreted in terms of the power dissipated in the system. The boundary integral equations are numerically solved using a finite element method for a few illustrative cases.</p><p>Net field and accumulated surface charge in a two-region system. The two regions have contrasting complex conductivities. The system is in the presence of an oscillatory, uniform electric field</p>","PeriodicalId":790,"journal":{"name":"The European Physical Journal E","volume":"47 9","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal E","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epje/s10189-024-00449-0","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The response of a homogeneous material to the presence of an external low-frequency oscillating electric field can be described by means of an effective complex conductivity. Low frequencies are characterized by negligible magnetic and radiative effects. The properties of heterogeneous systems, composed of multiple homogeneous regions, can be determined from those of the individual components and their geometric arrangement. Examples of such heterogeneous systems include soft materials such as colloidal suspensions, electrolyte systems, and biological tissues. The difference in the intrinsic conductivities between the homogeneous regions leads to the creation of an oscillating charge density localized at the interfaces between these regions. We show how to express key properties of these systems using this dynamic charge as a fundamental variable. We derive a boundary integral equation for the charges and reconstruct potentials and fields from its solution. We present a variational principle that recovers the fundamental equations for the system in terms of the oscillating charge and show that, in some formulations, the associated functional can be interpreted in terms of the power dissipated in the system. The boundary integral equations are numerically solved using a finite element method for a few illustrative cases.

Net field and accumulated surface charge in a two-region system. The two regions have contrasting complex conductivities. The system is in the presence of an oscillatory, uniform electric field

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
低频状态下异质系统中的传导:变分法原理和边界积分方程。
均质材料对外部低频振荡电场的响应可以通过有效复合电导率来描述。低频的特点是磁效应和辐射效应可以忽略不计。由多个同质区域组成的异质系统的特性可以通过单个组件的特性及其几何排列来确定。此类异质系统的例子包括胶体悬浮液、电解质系统和生物组织等软材料。同质区域之间固有电导率的差异导致在这些区域之间的界面上产生局部振荡电荷密度。我们展示了如何利用这种动态电荷作为基本变量来表达这些系统的关键特性。我们推导出电荷的边界积分方程,并根据其解法重建电势和电场。我们提出了一个变分原理,以振荡电荷为基础恢复系统的基本方程,并表明在某些公式中,相关函数可以用系统耗散的功率来解释。在一些示例中,我们使用有限元法对边界积分方程进行了数值求解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
The European Physical Journal E
The European Physical Journal E CHEMISTRY, PHYSICAL-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
2.60
自引率
5.60%
发文量
92
审稿时长
3 months
期刊介绍: EPJ E publishes papers describing advances in the understanding of physical aspects of Soft, Liquid and Living Systems. Soft matter is a generic term for a large group of condensed, often heterogeneous systems -- often also called complex fluids -- that display a large response to weak external perturbations and that possess properties governed by slow internal dynamics. Flowing matter refers to all systems that can actually flow, from simple to multiphase liquids, from foams to granular matter. Living matter concerns the new physics that emerges from novel insights into the properties and behaviours of living systems. Furthermore, it aims at developing new concepts and quantitative approaches for the study of biological phenomena. Approaches from soft matter physics and statistical physics play a key role in this research. The journal includes reports of experimental, computational and theoretical studies and appeals to the broad interdisciplinary communities including physics, chemistry, biology, mathematics and materials science.
期刊最新文献
Modeling straight and circle swimmers: from single swimmer to collective motion Multibody interactions between protein inclusions in the pointlike curvature model for tense and tensionless membranes Research on sedimentation characteristics of squirmer in a power-law fluid Effect of repulsive interaction and initial velocity on collective motion process A structural determinant of the behavior of water at hydration and nanoconfinement conditions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1