Biodegradation of sugarcane bagasse biomass using recombinant alpha-galactosidase overexpressing whole-cell E.coli: a sustainable method of agricultural waste utilization.

IF 2.6 4区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY 3 Biotech Pub Date : 2024-10-01 Epub Date: 2024-09-25 DOI:10.1007/s13205-024-04092-6
P M Vetriselvi, Manoj Kumar Narasimhan, Marcus Samuel, Rex Arunraj
{"title":"Biodegradation of sugarcane bagasse biomass using recombinant alpha-galactosidase overexpressing whole-cell <i>E.coli</i>: a sustainable method of agricultural waste utilization.","authors":"P M Vetriselvi, Manoj Kumar Narasimhan, Marcus Samuel, Rex Arunraj","doi":"10.1007/s13205-024-04092-6","DOIUrl":null,"url":null,"abstract":"<p><p>Whole-cell bacteria overexpressing a combo of enzymes capable of breaking down complex lignocellulosic components of cell wall is a path-breaking innovation that is eco-friendly for agricultural waste processing and sustainable environment. In this study, a whole-cell <i>E. coli</i> overexpressing the enzyme alpha-galactosidase is used to biodegrade sugarcane bagasse, presenting a sustainable approach for agricultural waste utilization. Alpha-galactosidase is an enzyme that breaks down alpha-D-galactose residues at the non-reducing ends of oligosaccharides (such as raffinose, stachyose, and verbascose), complex galactomannans, and galactolipids. Submerged and solid-state fermentation-mediated hydrolysis of bagasse waste using recombinant <i>E. coli</i> overexpressing α-galactosidase shows a decrease in the level of α-galactosides releasing sucrose and reducing sugars, indicating a continuous breakdown of the cell wall. Scanning electron microscopy indicates substantial disintegration of cell wall fibers under both submerged (12 h) and solid-state (7 days) fermentation, confirming the disruption of bagasse cell wall structural integrity. The 2XM9 media was found competent for both total protein and enzyme activity; the total protein concentration was 2553 µg/ml after 28 h of induction with an enzyme activity of 0.445 gal units/µg of protein after 16 h of induction at 24 °C. The results show that using whole-cell recombinant systems that express different cell wall-degrading enzymes could be a sustainable way to use agricultural waste, which would help with both waste management and protecting the environment.</p>","PeriodicalId":7067,"journal":{"name":"3 Biotech","volume":"14 10","pages":"246"},"PeriodicalIF":2.6000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11424598/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"3 Biotech","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s13205-024-04092-6","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/25 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Whole-cell bacteria overexpressing a combo of enzymes capable of breaking down complex lignocellulosic components of cell wall is a path-breaking innovation that is eco-friendly for agricultural waste processing and sustainable environment. In this study, a whole-cell E. coli overexpressing the enzyme alpha-galactosidase is used to biodegrade sugarcane bagasse, presenting a sustainable approach for agricultural waste utilization. Alpha-galactosidase is an enzyme that breaks down alpha-D-galactose residues at the non-reducing ends of oligosaccharides (such as raffinose, stachyose, and verbascose), complex galactomannans, and galactolipids. Submerged and solid-state fermentation-mediated hydrolysis of bagasse waste using recombinant E. coli overexpressing α-galactosidase shows a decrease in the level of α-galactosides releasing sucrose and reducing sugars, indicating a continuous breakdown of the cell wall. Scanning electron microscopy indicates substantial disintegration of cell wall fibers under both submerged (12 h) and solid-state (7 days) fermentation, confirming the disruption of bagasse cell wall structural integrity. The 2XM9 media was found competent for both total protein and enzyme activity; the total protein concentration was 2553 µg/ml after 28 h of induction with an enzyme activity of 0.445 gal units/µg of protein after 16 h of induction at 24 °C. The results show that using whole-cell recombinant systems that express different cell wall-degrading enzymes could be a sustainable way to use agricultural waste, which would help with both waste management and protecting the environment.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用重组α-半乳糖苷酶过表达全细胞大肠杆菌对甘蔗渣生物质进行生物降解:一种可持续的农业废物利用方法。
过量表达能分解细胞壁中复杂木质纤维素成分的组合酶的全细胞细菌是一种突破性创新,对农业废物处理和可持续环境具有生态友好性。本研究利用过量表达α-半乳糖苷酶的全细胞大肠杆菌对甘蔗渣进行生物降解,为农业废物利用提供了一种可持续的方法。α-半乳糖苷酶是一种能分解低聚糖(如棉子糖、水苏糖和马来糖)非还原末端的α-D-半乳糖残基、复合半乳甘露聚糖和半乳脂的酶。利用过量表达 α-半乳糖苷酶的重组大肠杆菌对甘蔗渣废料进行浸没式和固态发酵介导的水解显示,释放出蔗糖和还原糖的α-半乳糖苷水平下降,表明细胞壁在不断分解。扫描电子显微镜显示,在浸没发酵(12 小时)和固态发酵(7 天)过程中,细胞壁纤维都发生了大量分解,证实蔗渣细胞壁结构的完整性受到破坏。在 2XM9 培养基中,总蛋白和酶活性均合格;在 24 °C 下诱导 28 小时后,总蛋白浓度为 2553 微克/毫升,诱导 16 小时后,酶活性为 0.445 gal 单位/微克蛋白。研究结果表明,使用表达不同细胞壁降解酶的全细胞重组系统是一种可持续利用农业废弃物的方法,有助于废弃物管理和环境保护。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
3 Biotech
3 Biotech Agricultural and Biological Sciences-Agricultural and Biological Sciences (miscellaneous)
CiteScore
6.00
自引率
0.00%
发文量
314
期刊介绍: 3 Biotech publishes the results of the latest research related to the study and application of biotechnology to: - Medicine and Biomedical Sciences - Agriculture - The Environment The focus on these three technology sectors recognizes that complete Biotechnology applications often require a combination of techniques. 3 Biotech not only presents the latest developments in biotechnology but also addresses the problems and benefits of integrating a variety of techniques for a particular application. 3 Biotech will appeal to scientists and engineers in both academia and industry focused on the safe and efficient application of Biotechnology to Medicine, Agriculture and the Environment.
期刊最新文献
Antidiabetic, anti-inflammatory, antioxidant, and cytotoxicity potentials of green-synthesized zinc oxide nanoparticles using the aqueous extract of Helichrysum cymosum. Bioinformatics analysis and experimental validation of the oncogenic role of COL11A1 in pan-cancer. Nanomaterial-enabled drug transport systems: a comprehensive exploration of current developments and future avenues in therapeutic delivery. Cultivation of microalgae Chlorella vulgaris, Monoraphidium sp and Scenedesmus obliquus in wastewater from the household appliance industry for bioremediation and biofuel production. Cutting-edge perspectives on biosurfactants: implications for antimicrobial and biomedical applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1