Xin-Heng He, Jun-Rui Li, James Xu, Hong Shan, Shi-Yi Shen, Si-Han Gao, H Eric Xu
{"title":"AI-driven antibody design with generative diffusion models: current insights and future directions.","authors":"Xin-Heng He, Jun-Rui Li, James Xu, Hong Shan, Shi-Yi Shen, Si-Han Gao, H Eric Xu","doi":"10.1038/s41401-024-01380-y","DOIUrl":null,"url":null,"abstract":"<p><p>Therapeutic antibodies are at the forefront of biotherapeutics, valued for their high target specificity and binding affinity. Despite their potential, optimizing antibodies for superior efficacy presents significant challenges in both monetary and time costs. Recent strides in computational and artificial intelligence (AI), especially generative diffusion models, have begun to address these challenges, offering novel approaches for antibody design. This review delves into specific diffusion-based generative methodologies tailored for antibody design tasks, de novo antibody design, and optimization of complementarity-determining region (CDR) loops, along with their evaluation metrics. We aim to provide an exhaustive overview of this burgeoning field, making it an essential resource for leveraging diffusion-based generative models in antibody design endeavors.</p>","PeriodicalId":6942,"journal":{"name":"Acta Pharmacologica Sinica","volume":null,"pages":null},"PeriodicalIF":6.9000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Pharmacologica Sinica","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41401-024-01380-y","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Therapeutic antibodies are at the forefront of biotherapeutics, valued for their high target specificity and binding affinity. Despite their potential, optimizing antibodies for superior efficacy presents significant challenges in both monetary and time costs. Recent strides in computational and artificial intelligence (AI), especially generative diffusion models, have begun to address these challenges, offering novel approaches for antibody design. This review delves into specific diffusion-based generative methodologies tailored for antibody design tasks, de novo antibody design, and optimization of complementarity-determining region (CDR) loops, along with their evaluation metrics. We aim to provide an exhaustive overview of this burgeoning field, making it an essential resource for leveraging diffusion-based generative models in antibody design endeavors.
期刊介绍:
APS (Acta Pharmacologica Sinica) welcomes submissions from diverse areas of pharmacology and the life sciences. While we encourage contributions across a broad spectrum, topics of particular interest include, but are not limited to: anticancer pharmacology, cardiovascular and pulmonary pharmacology, clinical pharmacology, drug discovery, gastrointestinal and hepatic pharmacology, genitourinary, renal, and endocrine pharmacology, immunopharmacology and inflammation, molecular and cellular pharmacology, neuropharmacology, pharmaceutics, and pharmacokinetics. Join us in sharing your research and insights in pharmacology and the life sciences.