Role of grass endophytic fungi as a natural resource of bioactive metabolites

IF 2.3 3区 生物学 Q3 MICROBIOLOGY Archives of Microbiology Pub Date : 2024-09-26 DOI:10.1007/s00203-024-04132-y
R. Nischitha
{"title":"Role of grass endophytic fungi as a natural resource of bioactive metabolites","authors":"R. Nischitha","doi":"10.1007/s00203-024-04132-y","DOIUrl":null,"url":null,"abstract":"<div><p>Grass endophytic fungi have garnered increasing attention as a prolific source of bioactive metabolites with potential application across various fields, including pharmaceticals agriculture and industry. This review paper aims to synthesize knowledge on the diversity, isolation, and bioactivity of metabolites produced by grass endophytic fungi. Additionally, this approach aids in the conservation of rare and endangered plant species. Advanced analytical techniques such as high-performance liquid chromatography, liquid chromatograpy-mass spectrometry and gas chromatography are discussed as critical tools for metabolite identification and characterization. The review also highlights significant bioactive metabolites discovered to date, emphasizing their antimicrobial, antioxidant, and insecticidal activities and plant growth regulation properties. Besides address the challenges and future prospects in harnessing grass endophytic fungi for sustainable biotenological applications. By consolidating recent advancements and identifying agaps in the current research, this paper provides a comprehensive overview of the potential grass endophytic fungi as a valuable resource for novel bioactive compounds.</p></div>","PeriodicalId":8279,"journal":{"name":"Archives of Microbiology","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Microbiology","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s00203-024-04132-y","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Grass endophytic fungi have garnered increasing attention as a prolific source of bioactive metabolites with potential application across various fields, including pharmaceticals agriculture and industry. This review paper aims to synthesize knowledge on the diversity, isolation, and bioactivity of metabolites produced by grass endophytic fungi. Additionally, this approach aids in the conservation of rare and endangered plant species. Advanced analytical techniques such as high-performance liquid chromatography, liquid chromatograpy-mass spectrometry and gas chromatography are discussed as critical tools for metabolite identification and characterization. The review also highlights significant bioactive metabolites discovered to date, emphasizing their antimicrobial, antioxidant, and insecticidal activities and plant growth regulation properties. Besides address the challenges and future prospects in harnessing grass endophytic fungi for sustainable biotenological applications. By consolidating recent advancements and identifying agaps in the current research, this paper provides a comprehensive overview of the potential grass endophytic fungi as a valuable resource for novel bioactive compounds.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
草内生真菌作为生物活性代谢物自然资源的作用。
草内生真菌是生物活性代谢物的丰富来源,在包括药物、农业和工业在内的各个领域都有潜在的应用价值,因此受到越来越多的关注。本综述论文旨在总结有关草内生真菌产生的代谢物的多样性、分离和生物活性的知识。此外,这种方法还有助于保护稀有和濒危植物物种。文章讨论了高效液相色谱法、液相色谱-质谱法和气相色谱法等先进分析技术,这些技术是鉴定和表征代谢物的关键工具。综述还重点介绍了迄今为止发现的重要生物活性代谢物,强调了它们的抗菌、抗氧化和杀虫活性以及植物生长调节特性。此外,还探讨了利用草内生真菌进行可持续生物热能应用所面临的挑战和未来前景。通过整合最新研究进展并找出当前研究的不足之处,本文全面概述了草内生真菌作为新型生物活性化合物宝贵资源的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Archives of Microbiology
Archives of Microbiology 生物-微生物学
CiteScore
4.90
自引率
3.60%
发文量
601
审稿时长
3 months
期刊介绍: Research papers must make a significant and original contribution to microbiology and be of interest to a broad readership. The results of any experimental approach that meets these objectives are welcome, particularly biochemical, molecular genetic, physiological, and/or physical investigations into microbial cells and their interactions with their environments, including their eukaryotic hosts. Mini-reviews in areas of special topical interest and papers on medical microbiology, ecology and systematics, including description of novel taxa, are also published. Theoretical papers and those that report on the analysis or ''mining'' of data are acceptable in principle if new information, interpretations, or hypotheses emerge.
期刊最新文献
Construction of engineered probiotic that adhere and display nanobody to neutralize porcine reproductive and respiratory syndrome virus Sublethal injury and recovery of Escherichia coli O157:H7 after dielectric barrier discharge plasma treatment A step-by-step procedure for analysing the 16S rRNA-based microbiome diversity using QIIME 2 and comprehensive PICRUSt2 illustration for functional prediction An improved DNA extraction method in okra for rapid PCR detection of Okra enation leaf curl virus from diverse Indian regions Exploring secretory signal sequences useful in excreting recombinant proteins in Beauveria bassiana as biocontrol fungus
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1