Stepwise Corrected Attention Registration Network for Preoperative and Follow-Up Magnetic Resonance Imaging of Glioma Patients.

IF 3.8 3区 医学 Q2 ENGINEERING, BIOMEDICAL Bioengineering Pub Date : 2024-09-23 DOI:10.3390/bioengineering11090951
Yuefei Feng, Yao Zheng, Dong Huang, Jie Wei, Tianci Liu, Yinyan Wang, Yang Liu
{"title":"Stepwise Corrected Attention Registration Network for Preoperative and Follow-Up Magnetic Resonance Imaging of Glioma Patients.","authors":"Yuefei Feng, Yao Zheng, Dong Huang, Jie Wei, Tianci Liu, Yinyan Wang, Yang Liu","doi":"10.3390/bioengineering11090951","DOIUrl":null,"url":null,"abstract":"<p><p>The registration of preoperative and follow-up brain MRI, which is crucial in illustrating patients' responses to treatments and providing guidance for postoperative therapy, presents significant challenges. These challenges stem from the considerable deformation of brain tissue and the areas of non-correspondence due to surgical intervention and postoperative changes. We propose a stepwise corrected attention registration network grounded in convolutional neural networks (CNNs). This methodology leverages preoperative and follow-up MRI scans as fixed images and moving images, respectively, and employs a multi-level registration strategy that establishes a precise and holistic correspondence between images, from coarse to fine. Furthermore, our model introduces a corrected attention module into the multi-level registration network that can generate an attention map at the local level through the deformation fields of the upper-level registration network and pathological areas of preoperative images segmented by a mature algorithm in BraTS, serving to strengthen the registration accuracy of non-correspondence areas. A comparison between our scheme and the leading approach identified in the MICCAI's BraTS-Reg challenge indicates a 7.5% enhancement in the target registration error (TRE) metric and improved visualization of non-correspondence areas. These results illustrate the better performance of our stepwise corrected attention registration network in not only enhancing the registration accuracy but also achieving a more logical representation of non-correspondence areas. Thus, this work contributes significantly to the optimization of the registration of brain MRI between preoperative and follow-up scans.</p>","PeriodicalId":8874,"journal":{"name":"Bioengineering","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11428723/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bioengineering11090951","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The registration of preoperative and follow-up brain MRI, which is crucial in illustrating patients' responses to treatments and providing guidance for postoperative therapy, presents significant challenges. These challenges stem from the considerable deformation of brain tissue and the areas of non-correspondence due to surgical intervention and postoperative changes. We propose a stepwise corrected attention registration network grounded in convolutional neural networks (CNNs). This methodology leverages preoperative and follow-up MRI scans as fixed images and moving images, respectively, and employs a multi-level registration strategy that establishes a precise and holistic correspondence between images, from coarse to fine. Furthermore, our model introduces a corrected attention module into the multi-level registration network that can generate an attention map at the local level through the deformation fields of the upper-level registration network and pathological areas of preoperative images segmented by a mature algorithm in BraTS, serving to strengthen the registration accuracy of non-correspondence areas. A comparison between our scheme and the leading approach identified in the MICCAI's BraTS-Reg challenge indicates a 7.5% enhancement in the target registration error (TRE) metric and improved visualization of non-correspondence areas. These results illustrate the better performance of our stepwise corrected attention registration network in not only enhancing the registration accuracy but also achieving a more logical representation of non-correspondence areas. Thus, this work contributes significantly to the optimization of the registration of brain MRI between preoperative and follow-up scans.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于胶质瘤患者术前和随访磁共振成像的逐步校正注意力注册网络
术前和随访脑部磁共振成像的登记对于说明患者对治疗的反应和为术后治疗提供指导至关重要,但登记工作也面临着巨大的挑战。这些挑战源于脑组织的巨大变形以及手术干预和术后变化导致的不对应区域。我们提出了一种基于卷积神经网络(CNN)的逐步校正注意力注册网络。该方法利用术前和术后磁共振成像扫描分别作为固定图像和移动图像,并采用多级配准策略,在图像之间建立从粗到细的精确整体对应关系。此外,我们的模型还在多层次配准网络中引入了校正注意力模块,通过上层配准网络的形变场和术前图像中由 BraTS 中成熟算法分割的病理区域,生成局部级别的注意力图,从而加强非对应区域的配准精度。我们的方案与 MICCAI BraTS-Reg 挑战赛中确定的领先方法相比,目标配准误差 (TRE) 指标提高了 7.5%,非对应区域的可视化也得到了改善。这些结果表明,我们的逐步校正注意力配准网络不仅能提高配准精度,还能对非对应区域进行更合理的表示。因此,这项工作对优化术前扫描和随访扫描之间的脑磁共振成像配准做出了重大贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Bioengineering
Bioengineering Chemical Engineering-Bioengineering
CiteScore
4.00
自引率
8.70%
发文量
661
期刊介绍: Aims Bioengineering (ISSN 2306-5354) provides an advanced forum for the science and technology of bioengineering. It publishes original research papers, comprehensive reviews, communications and case reports. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. All aspects of bioengineering are welcomed from theoretical concepts to education and applications. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, four key features of this Journal: ● We are introducing a new concept in scientific and technical publications “The Translational Case Report in Bioengineering”. It is a descriptive explanatory analysis of a transformative or translational event. Understanding that the goal of bioengineering scholarship is to advance towards a transformative or clinical solution to an identified transformative/clinical need, the translational case report is used to explore causation in order to find underlying principles that may guide other similar transformative/translational undertakings. ● Manuscripts regarding research proposals and research ideas will be particularly welcomed. ● Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. ● We also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds. Scope ● Bionics and biological cybernetics: implantology; bio–abio interfaces ● Bioelectronics: wearable electronics; implantable electronics; “more than Moore” electronics; bioelectronics devices ● Bioprocess and biosystems engineering and applications: bioprocess design; biocatalysis; bioseparation and bioreactors; bioinformatics; bioenergy; etc. ● Biomolecular, cellular and tissue engineering and applications: tissue engineering; chromosome engineering; embryo engineering; cellular, molecular and synthetic biology; metabolic engineering; bio-nanotechnology; micro/nano technologies; genetic engineering; transgenic technology ● Biomedical engineering and applications: biomechatronics; biomedical electronics; biomechanics; biomaterials; biomimetics; biomedical diagnostics; biomedical therapy; biomedical devices; sensors and circuits; biomedical imaging and medical information systems; implants and regenerative medicine; neurotechnology; clinical engineering; rehabilitation engineering ● Biochemical engineering and applications: metabolic pathway engineering; modeling and simulation ● Translational bioengineering
期刊最新文献
A Scoping Review of 'Smart' Dressings for Diagnosing Surgical Site Infection: A Focus on Arthroplasty. Characterization of MSC Growth, Differentiation, and EV Production in CNF Hydrogels Under Static and Dynamic Cultures in Hypoxic and Normoxic Conditions. Mamba- and ResNet-Based Dual-Branch Network for Ultrasound Thyroid Nodule Segmentation. Exploring NRB Biofilm Adhesion and Biocorrosion in Oil/Water Recovery Operations Within Pipelines. Wearable Online Freezing of Gait Detection and Cueing System.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1