Research progress in the biosynthesis of xylitol: feedstock evolution from xylose to glucose.

IF 2.1 4区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Biotechnology Letters Pub Date : 2024-12-01 Epub Date: 2024-09-28 DOI:10.1007/s10529-024-03535-7
Xin-Yu Zhang, Xi-Min Zhao, Xin-Yu Shi, Ying-Jie Mei, Xiao-Jie Ren, Xin-He Zhao
{"title":"Research progress in the biosynthesis of xylitol: feedstock evolution from xylose to glucose.","authors":"Xin-Yu Zhang, Xi-Min Zhao, Xin-Yu Shi, Ying-Jie Mei, Xiao-Jie Ren, Xin-He Zhao","doi":"10.1007/s10529-024-03535-7","DOIUrl":null,"url":null,"abstract":"<p><p>Xylitol, as an important food additive and fine chemical, has a wide range of applications, including food, medicine, chemical, and feed. This review paper focuses on the research progress of xylitol biosynthesis, from overcoming the limitations of traditional chemical hydrogenation and xylose bioconversion, to the full biosynthesis of xylitol production using green and non-polluting glucose as substrate. In the review, the molecular strategies of wild strains to increase xylitol yield, as well as the optimization strategies and metabolic reconfiguration during xylitol biosynthesis are discussed. Subsequently, on the basis of existing studies, the paper further discusses the current status of research and future perspectives of xylitol production using glucose as a single substrate. The evolution of raw materials from xylose-based five-carbon sugars to glucose is not only cost-saving, but also safe and environmentally friendly, which brings new opportunities for the green industrial chain of xylitol.</p>","PeriodicalId":8929,"journal":{"name":"Biotechnology Letters","volume":" ","pages":"925-943"},"PeriodicalIF":2.1000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology Letters","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10529-024-03535-7","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/28 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Xylitol, as an important food additive and fine chemical, has a wide range of applications, including food, medicine, chemical, and feed. This review paper focuses on the research progress of xylitol biosynthesis, from overcoming the limitations of traditional chemical hydrogenation and xylose bioconversion, to the full biosynthesis of xylitol production using green and non-polluting glucose as substrate. In the review, the molecular strategies of wild strains to increase xylitol yield, as well as the optimization strategies and metabolic reconfiguration during xylitol biosynthesis are discussed. Subsequently, on the basis of existing studies, the paper further discusses the current status of research and future perspectives of xylitol production using glucose as a single substrate. The evolution of raw materials from xylose-based five-carbon sugars to glucose is not only cost-saving, but also safe and environmentally friendly, which brings new opportunities for the green industrial chain of xylitol.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
木糖醇生物合成的研究进展:从木糖到葡萄糖的原料演变。
木糖醇作为一种重要的食品添加剂和精细化学品,在食品、医药、化工和饲料等领域有着广泛的应用。本综述着重介绍了木糖醇生物合成的研究进展,从克服传统化学加氢和木糖生物转化的局限性,到以绿色无污染的葡萄糖为底物,实现木糖醇生产的全生物合成。综述讨论了野生菌株提高木糖醇产量的分子策略,以及木糖醇生物合成过程中的优化策略和代谢重构。随后,本文在现有研究的基础上,进一步讨论了以葡萄糖为单一底物生产木糖醇的研究现状和未来展望。从木糖基五碳糖到葡萄糖的原料演变,不仅节约成本,而且安全环保,为木糖醇的绿色产业链带来了新的机遇。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biotechnology Letters
Biotechnology Letters 工程技术-生物工程与应用微生物
CiteScore
5.90
自引率
3.70%
发文量
108
审稿时长
1.2 months
期刊介绍: Biotechnology Letters is the world’s leading rapid-publication primary journal dedicated to biotechnology as a whole – that is to topics relating to actual or potential applications of biological reactions affected by microbial, plant or animal cells and biocatalysts derived from them. All relevant aspects of molecular biology, genetics and cell biochemistry, of process and reactor design, of pre- and post-treatment steps, and of manufacturing or service operations are therefore included. Contributions from industrial and academic laboratories are equally welcome. We also welcome contributions covering biotechnological aspects of regenerative medicine and biomaterials and also cancer biotechnology. Criteria for the acceptance of papers relate to our aim of publishing useful and informative results that will be of value to other workers in related fields. The emphasis is very much on novelty and immediacy in order to justify rapid publication of authors’ results. It should be noted, however, that we do not normally publish papers (but this is not absolute) that deal with unidentified consortia of microorganisms (e.g. as in activated sludge) as these results may not be easily reproducible in other laboratories. Papers describing the isolation and identification of microorganisms are not regarded as appropriate but such information can be appended as supporting information to a paper. Papers dealing with simple process development are usually considered to lack sufficient novelty or interest to warrant publication.
期刊最新文献
Metabolic engineering of Bacillus subtilis for enhanced free heme biosynthesis by an enzyme-chassis co-optimization strategy. Biosynthesis of the fragrance compound cinnamyl isobutyrate in Escherichia coli. Characterization of a GH5 β-1, 4-endo-glucanase from Bacillus subtilis ZS57 and its potential application in brewing industry and agricultural straws saccharification. Correction: Inhibition effects of amino acids on polyphenol oxidase activity isolated from medlar fruit. Encapsulation of crocin using low-molecular-weight Penicillium expansum-derived chitosan and process optimization via Taguchi orthogonal array design.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1