Predicting diabetes in adults: identifying important features in unbalanced data over a 5-year cohort study using machine learning algorithm.

IF 3.9 3区 医学 Q1 HEALTH CARE SCIENCES & SERVICES BMC Medical Research Methodology Pub Date : 2024-09-27 DOI:10.1186/s12874-024-02341-z
Maryam Talebi Moghaddam, Yones Jahani, Zahra Arefzadeh, Azizallah Dehghan, Mohsen Khaleghi, Mehdi Sharafi, Ghasem Nikfar
{"title":"Predicting diabetes in adults: identifying important features in unbalanced data over a 5-year cohort study using machine learning algorithm.","authors":"Maryam Talebi Moghaddam, Yones Jahani, Zahra Arefzadeh, Azizallah Dehghan, Mohsen Khaleghi, Mehdi Sharafi, Ghasem Nikfar","doi":"10.1186/s12874-024-02341-z","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Imbalanced datasets pose significant challenges in predictive modeling, leading to biased outcomes and reduced model reliability. This study addresses data imbalance in diabetes prediction using machine learning techniques. Utilizing data from the Fasa Adult Cohort Study (FACS) with a 5-year follow-up of 10,000 participants, we developed predictive models for Type 2 diabetes.</p><p><strong>Methods: </strong>We employed various data-level and algorithm-level interventions, including SMOTE, ADASYN, SMOTEENN, Random Over Sampling and KMeansSMOTE, paired with Random Forest, Gradient Boosting, Decision Tree and Multi-Layer Perceptron (MLP) classifier. We evaluated model performance using F1 score, AUC, and G-means-metrics chosen to provide a comprehensive assessment of model accuracy, discrimination ability, and overall balance in performance, particularly in the context of imbalanced datasets.</p><p><strong>Results: </strong>our study uncovered key factors influencing diabetes risk and evaluated the performance of various machine learning models. Feature importance analysis revealed that the most influential predictors of diabetes differ between males and females. For females, the most important factors are triglyceride (TG), basal metabolic rate (BMR), and total cholesterol (CHOL), whereas for males, the key predictors are body Mass Index (BMI), serum glutamate Oxaloacetate Transaminase (SGOT), and Gamma-Glutamyl (GGT). Across the entire dataset, BMI remains the most important variable, followed by SGOT, BMR, and energy intake. These insights suggest that gender-specific risk profiles should be considered in diabetes prevention and management strategies. In terms of model performance, our results show that ADASYN with MLP classifier achieved an F1 score of 82.17 ± 3.38, AUC of 89.61 ± 2.09, and G-means of 89.15 ± 2.31. SMOTE with MLP followed closely with an F1 score of 79.85 ± 3.91, AUC of 89.7 ± 2.54, and G-means of 89.31 ± 2.78. The SMOTEENN with Random Forest combination achieved an F1 score of 78.27 ± 1.54, AUC of 87.18 ± 1.12, and G-means of 86.47 ± 1.28.</p><p><strong>Conclusion: </strong>These combinations effectively address class imbalance, improving the accuracy and reliability of diabetes predictions. The findings highlight the importance of using appropriate data-balancing techniques in medical data analysis.</p>","PeriodicalId":9114,"journal":{"name":"BMC Medical Research Methodology","volume":"24 1","pages":"220"},"PeriodicalIF":3.9000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11430121/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Medical Research Methodology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12874-024-02341-z","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Imbalanced datasets pose significant challenges in predictive modeling, leading to biased outcomes and reduced model reliability. This study addresses data imbalance in diabetes prediction using machine learning techniques. Utilizing data from the Fasa Adult Cohort Study (FACS) with a 5-year follow-up of 10,000 participants, we developed predictive models for Type 2 diabetes.

Methods: We employed various data-level and algorithm-level interventions, including SMOTE, ADASYN, SMOTEENN, Random Over Sampling and KMeansSMOTE, paired with Random Forest, Gradient Boosting, Decision Tree and Multi-Layer Perceptron (MLP) classifier. We evaluated model performance using F1 score, AUC, and G-means-metrics chosen to provide a comprehensive assessment of model accuracy, discrimination ability, and overall balance in performance, particularly in the context of imbalanced datasets.

Results: our study uncovered key factors influencing diabetes risk and evaluated the performance of various machine learning models. Feature importance analysis revealed that the most influential predictors of diabetes differ between males and females. For females, the most important factors are triglyceride (TG), basal metabolic rate (BMR), and total cholesterol (CHOL), whereas for males, the key predictors are body Mass Index (BMI), serum glutamate Oxaloacetate Transaminase (SGOT), and Gamma-Glutamyl (GGT). Across the entire dataset, BMI remains the most important variable, followed by SGOT, BMR, and energy intake. These insights suggest that gender-specific risk profiles should be considered in diabetes prevention and management strategies. In terms of model performance, our results show that ADASYN with MLP classifier achieved an F1 score of 82.17 ± 3.38, AUC of 89.61 ± 2.09, and G-means of 89.15 ± 2.31. SMOTE with MLP followed closely with an F1 score of 79.85 ± 3.91, AUC of 89.7 ± 2.54, and G-means of 89.31 ± 2.78. The SMOTEENN with Random Forest combination achieved an F1 score of 78.27 ± 1.54, AUC of 87.18 ± 1.12, and G-means of 86.47 ± 1.28.

Conclusion: These combinations effectively address class imbalance, improving the accuracy and reliability of diabetes predictions. The findings highlight the importance of using appropriate data-balancing techniques in medical data analysis.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
预测成人糖尿病:使用机器学习算法识别 5 年队列研究中不平衡数据的重要特征。
背景:不平衡数据集给预测建模带来了巨大挑战,导致结果有偏差和模型可靠性降低。本研究利用机器学习技术解决糖尿病预测中的数据不平衡问题。我们利用法萨成人队列研究(FACS)10,000 名参与者的 5 年随访数据,开发了 2 型糖尿病预测模型:我们采用了各种数据级和算法级干预措施,包括 SMOTE、ADASYN、SMOTEENN、随机过度采样和 KMeansSMOTE,以及随机森林、梯度提升、决策树和多层感知器(MLP)分类器。结果:我们的研究发现了影响糖尿病风险的关键因素,并评估了各种机器学习模型的性能。特征重要性分析表明,最有影响力的糖尿病预测因素在男性和女性之间存在差异。对女性来说,最重要的因素是甘油三酯(TG)、基础代谢率(BMR)和总胆固醇(CHOL),而对男性来说,关键的预测因素是体重指数(BMI)、血清谷草转氨酶(SGOT)和γ-谷氨酰(GGT)。在整个数据集中,体重指数仍然是最重要的变量,其次是谷草转氨酶、基础代谢率和能量摄入。这些启示表明,在糖尿病预防和管理策略中应考虑到不同性别的风险特征。在模型性能方面,我们的结果显示,采用 MLP 分类器的 ADASYN 的 F1 得分为 82.17 ± 3.38,AUC 为 89.61 ± 2.09,G-means 为 89.15 ± 2.31。采用 MLP 的 SMOTE 紧随其后,F1 得分为 79.85 ± 3.91,AUC 为 89.7 ± 2.54,G-means 为 89.31 ± 2.78。SMOTEENN 与随机森林组合的 F1 分数为 78.27 ± 1.54,AUC 为 87.18 ± 1.12,G-means 为 86.47 ± 1.28:这些组合有效地解决了类别不平衡问题,提高了糖尿病预测的准确性和可靠性。研究结果凸显了在医学数据分析中使用适当的数据平衡技术的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
BMC Medical Research Methodology
BMC Medical Research Methodology 医学-卫生保健
CiteScore
6.50
自引率
2.50%
发文量
298
审稿时长
3-8 weeks
期刊介绍: BMC Medical Research Methodology is an open access journal publishing original peer-reviewed research articles in methodological approaches to healthcare research. Articles on the methodology of epidemiological research, clinical trials and meta-analysis/systematic review are particularly encouraged, as are empirical studies of the associations between choice of methodology and study outcomes. BMC Medical Research Methodology does not aim to publish articles describing scientific methods or techniques: these should be directed to the BMC journal covering the relevant biomedical subject area.
期刊最新文献
Correction: Forced randomization: the what, why, and how. Three new methodologies for calculating the effective sample size when performing population adjustment. Correction: Inclusion of unexposed clusters improves the precision of fixed effects analysis of stepped-wedge cluster randomized trials with binary and count outcomes. FAIR data management: a framework for fostering data literacy in biomedical sciences education. A Bayesian analysis integrating expert beliefs to better understand how new evidence ought to update what we believe: a use case of chiropractic care and acute lumbar disc herniation with early surgery.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1