{"title":"Built-In Electric Field Boost Photocatalytic Degradation of Pollutants in Wastewater","authors":"Yang Yu, Zhiyong Qiao, Changming Ding","doi":"10.1002/tcr.202400106","DOIUrl":null,"url":null,"abstract":"<p>The photocatalysis technique shows significant potential for wastewater degradation; however, the rapid recombination of photogenerated holes and electrons severely limits its photocatalytic efficiency. This situation necessitates the development of effective strategies to tackle these challenges. One well-documented approach is built-in electric field engineering in heterojunctions or composites, which has been shown to enhance electron transfer and thereby reduce the recombination of electrons and holes. This strategy has proven highly effective in significantly improving photocatalytic activity for the degradation of pollutants in wastewater. In this context, we summarize recent advancements in built-in electric field engineering in photocatalysts, highlighting the fundamentals and modifications of this approach, as well as its positive impact on photocatalytic performance in the degradation of wastewater pollutants.</p>","PeriodicalId":10046,"journal":{"name":"Chemical record","volume":"24 10","pages":""},"PeriodicalIF":7.0000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical record","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/tcr.202400106","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The photocatalysis technique shows significant potential for wastewater degradation; however, the rapid recombination of photogenerated holes and electrons severely limits its photocatalytic efficiency. This situation necessitates the development of effective strategies to tackle these challenges. One well-documented approach is built-in electric field engineering in heterojunctions or composites, which has been shown to enhance electron transfer and thereby reduce the recombination of electrons and holes. This strategy has proven highly effective in significantly improving photocatalytic activity for the degradation of pollutants in wastewater. In this context, we summarize recent advancements in built-in electric field engineering in photocatalysts, highlighting the fundamentals and modifications of this approach, as well as its positive impact on photocatalytic performance in the degradation of wastewater pollutants.
期刊介绍:
The Chemical Record (TCR) is a "highlights" journal publishing timely and critical overviews of new developments at the cutting edge of chemistry of interest to a wide audience of chemists (2013 journal impact factor: 5.577). The scope of published reviews includes all areas related to physical chemistry, analytical chemistry, inorganic chemistry, organic chemistry, polymer chemistry, materials chemistry, bioorganic chemistry, biochemistry, biotechnology and medicinal chemistry as well as interdisciplinary fields.
TCR provides carefully selected highlight papers by leading researchers that introduce the author''s own experimental and theoretical results in a framework designed to establish perspectives with earlier and contemporary work and provide a critical review of the present state of the subject. The articles are intended to present concise evaluations of current trends in chemistry research to help chemists gain useful insights into fields outside their specialization and provide experts with summaries of recent key developments.