首页 > 最新文献

Chemical record最新文献

英文 中文
Recent Developments in the Fabrication and Application of Superhydrophobic Suraces. 制造和应用超疏水膜的最新进展。
IF 7 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-09-09 DOI: 10.1002/tcr.202400065
Ting Li, Yi Peng, Hang You, Xiaoya Guan, Jin Lv, Chong Yang

A superhydrophobic surface is defined as having a contact angle exceeding 150 °C, indicating a remarkable ability to repel water. Generally, superhydrophobicity originates from the utilization of low-surface-energy materials with unique micro- and nanostructures. Superhydrophobic surfaces have gained considerable recognition and are widely employed in diverse areas for anti-icing, oil-water separation, anticorrosion, self-cleaning, blood-repellent, and antibacterial applications. These surfaces can greatly enhance industrial processes by yielding significant performance improvements. In this review, we introduce the basic theories that provide a foundation for understanding the hydrophobic properties of superhydrophobic surfaces. We then discuss current techniques for fabricating superhydrophobic coatings, critically analyzing their strengths and limitations. Furthermore, we provide an overview of recent progress in the application of superhydrophobic materials. Finally, we summarize the challenges in developing superhydrophobic materials and future trends in this field. The insights provided by this review can help researchers understand the basic knowledge of superhydrophobic surfaces and obtain the latest progress and challenges in the application of superhydrophobic surfaces. It provides help for further research and practical application of superhydrophobic surfaces.

超疏水表面的定义是接触角超过 150 °C,表明其具有显著的拒水能力。一般来说,超疏水性源于利用具有独特微观和纳米结构的低表面能材料。超疏水表面已得到广泛认可,并被广泛应用于防冰、油水分离、防腐、自洁、驱血和抗菌等多个领域。这些表面能显著提高性能,从而大大改善工业流程。在本综述中,我们将介绍为理解超疏水表面的疏水特性奠定基础的基本理论。然后,我们讨论了当前制造超疏水涂层的技术,并认真分析了这些技术的优势和局限性。此外,我们还概述了超疏水材料应用的最新进展。最后,我们总结了开发超疏水材料所面临的挑战以及该领域的未来趋势。本综述提供的见解有助于研究人员了解超疏水表面的基本知识,并获得超疏水表面应用的最新进展和挑战。它为超疏水表面的进一步研究和实际应用提供了帮助。
{"title":"Recent Developments in the Fabrication and Application of Superhydrophobic Suraces.","authors":"Ting Li, Yi Peng, Hang You, Xiaoya Guan, Jin Lv, Chong Yang","doi":"10.1002/tcr.202400065","DOIUrl":"https://doi.org/10.1002/tcr.202400065","url":null,"abstract":"<p><p>A superhydrophobic surface is defined as having a contact angle exceeding 150 °C, indicating a remarkable ability to repel water. Generally, superhydrophobicity originates from the utilization of low-surface-energy materials with unique micro- and nanostructures. Superhydrophobic surfaces have gained considerable recognition and are widely employed in diverse areas for anti-icing, oil-water separation, anticorrosion, self-cleaning, blood-repellent, and antibacterial applications. These surfaces can greatly enhance industrial processes by yielding significant performance improvements. In this review, we introduce the basic theories that provide a foundation for understanding the hydrophobic properties of superhydrophobic surfaces. We then discuss current techniques for fabricating superhydrophobic coatings, critically analyzing their strengths and limitations. Furthermore, we provide an overview of recent progress in the application of superhydrophobic materials. Finally, we summarize the challenges in developing superhydrophobic materials and future trends in this field. The insights provided by this review can help researchers understand the basic knowledge of superhydrophobic surfaces and obtain the latest progress and challenges in the application of superhydrophobic surfaces. It provides help for further research and practical application of superhydrophobic surfaces.</p>","PeriodicalId":10046,"journal":{"name":"Chemical record","volume":null,"pages":null},"PeriodicalIF":7.0,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142153250","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dibenzo-Fused Heterocycles: A Decade Update on the Syntheses of Carbazole, Dibenzofuran, and Dibenzothiophene. 二苯并呋喃杂环:咔唑、二苯并呋喃和二苯并噻吩合成的十年更新。
IF 7 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-09-06 DOI: 10.1002/tcr.202400078
Anjana Sreekumar, Ajil R Nair, C Raksha, S Gopika, S Padmanabhan, R Gopalakrishna Pai, Akhil Sivan

Polycyclic heterocycles are the most common and critical structural motifs found in a variety of natural products, medicines, fertilizers, and advanced materials. Because of their widespread use in biologically active compounds and material chemistry, functionalised dibenzo heterocyclic compounds, especially dibenzofuran, dibenzothiophene, and carbazole derivatives, garnered much attention over time. Scientists are especially interested in elucidating more efficient techniques for developing these industrially essential compounds. Dibenzo-fused heterocycles can rapidly be synthesised using highly efficient transition metal-catalysed strategies as well as by economic metal-free reaction conditions. This review includes a detailed overview of the most recent significant synthetic techniques, both metal-catalysed and metal-free, to produce these industrially significant and medicinally important dibenzo-fused heterocycles.

多环杂环是各种天然产品、药物、肥料和先进材料中最常见和最重要的结构基团。由于其在生物活性化合物和材料化学中的广泛应用,功能化二苯杂环化合物,尤其是二苯并呋喃、二苯并噻吩和咔唑衍生物,一直以来都备受关注。科学家们对阐明开发这些工业必需化合物的更有效技术尤其感兴趣。利用高效的过渡金属催化策略以及经济的无金属反应条件,可以快速合成二苯并融合杂环。本综述详细概述了最新的重要合成技术,包括金属催化和无金属催化技术,以生产这些具有重要工业意义和药用价值的二苯并融合杂环化合物。
{"title":"Dibenzo-Fused Heterocycles: A Decade Update on the Syntheses of Carbazole, Dibenzofuran, and Dibenzothiophene.","authors":"Anjana Sreekumar, Ajil R Nair, C Raksha, S Gopika, S Padmanabhan, R Gopalakrishna Pai, Akhil Sivan","doi":"10.1002/tcr.202400078","DOIUrl":"https://doi.org/10.1002/tcr.202400078","url":null,"abstract":"<p><p>Polycyclic heterocycles are the most common and critical structural motifs found in a variety of natural products, medicines, fertilizers, and advanced materials. Because of their widespread use in biologically active compounds and material chemistry, functionalised dibenzo heterocyclic compounds, especially dibenzofuran, dibenzothiophene, and carbazole derivatives, garnered much attention over time. Scientists are especially interested in elucidating more efficient techniques for developing these industrially essential compounds. Dibenzo-fused heterocycles can rapidly be synthesised using highly efficient transition metal-catalysed strategies as well as by economic metal-free reaction conditions. This review includes a detailed overview of the most recent significant synthetic techniques, both metal-catalysed and metal-free, to produce these industrially significant and medicinally important dibenzo-fused heterocycles.</p>","PeriodicalId":10046,"journal":{"name":"Chemical record","volume":null,"pages":null},"PeriodicalIF":7.0,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142139410","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multichannel Lanthanide-Doped Nanoprobes for Serodiagnosis and Therapy. 用于血清诊断和治疗的多通道掺镧纳米探针。
IF 7 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-09-05 DOI: 10.1002/tcr.202400100
Yuxin Liu, Zheng Wei

In this account, we will highlight recent progress in the development of multichannel lanthanide-doped (MC-Ln) nanoprobes for highly efficient serodiagnosis and therapy, with a particular focus on our own work. First, we first provide a classification of the types of MC-Ln nanoprobes based on the contained type and number of signals. The merits of different types of nanoprobes and the reason using lanthanides are elucidated. Then, we provide an overview of the current uses of MC-Ln nanoprobes in serodiagnosis and therapy, focusing on the strategic exploration to improve the diagnostic and therapeutic performance from different perspectives. Finally, we present a prospective outlook on the future development and potential issues of next-generation MC-Ln nanoprobes. We hope that this timely account will update our understanding of MC-Ln and similar nanoprobes for bioapplications and provide helpful references for the state-of-the-art tools for serodiagnosis and therapy.

在本文中,我们将重点介绍在开发用于高效血清诊断和治疗的多通道掺镧(MC-Ln)纳米探针方面的最新进展,尤其是我们自己的工作。首先,我们根据所含信号的类型和数量对 MC-Ln 纳米探针的类型进行了分类。阐明了不同类型纳米探针的优点以及使用镧系元素的原因。然后,我们概述了 MC-Ln 纳米探针目前在血清诊断和治疗中的应用,重点介绍了从不同角度提高诊断和治疗性能的战略探索。最后,我们对下一代 MC-Ln 纳米探针的未来发展和潜在问题进行了展望。我们希望这篇及时的文章能更新我们对 MC-Ln 和类似纳米探针在生物应用方面的认识,并为血清诊断和治疗的最新工具提供有益的参考。
{"title":"Multichannel Lanthanide-Doped Nanoprobes for Serodiagnosis and Therapy.","authors":"Yuxin Liu, Zheng Wei","doi":"10.1002/tcr.202400100","DOIUrl":"https://doi.org/10.1002/tcr.202400100","url":null,"abstract":"<p><p>In this account, we will highlight recent progress in the development of multichannel lanthanide-doped (MC-Ln) nanoprobes for highly efficient serodiagnosis and therapy, with a particular focus on our own work. First, we first provide a classification of the types of MC-Ln nanoprobes based on the contained type and number of signals. The merits of different types of nanoprobes and the reason using lanthanides are elucidated. Then, we provide an overview of the current uses of MC-Ln nanoprobes in serodiagnosis and therapy, focusing on the strategic exploration to improve the diagnostic and therapeutic performance from different perspectives. Finally, we present a prospective outlook on the future development and potential issues of next-generation MC-Ln nanoprobes. We hope that this timely account will update our understanding of MC-Ln and similar nanoprobes for bioapplications and provide helpful references for the state-of-the-art tools for serodiagnosis and therapy.</p>","PeriodicalId":10046,"journal":{"name":"Chemical record","volume":null,"pages":null},"PeriodicalIF":7.0,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142132004","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Catalytic Hydrodeoxygenation of Phenols and Cresols to Gasoline Range Biofuels. 催化苯酚和甲酚加氢脱氧生成汽油系列生物燃料。
IF 7 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-09-05 DOI: 10.1002/tcr.202400092
Ahmed A Mohammed, Joy H Tannous

Unlike fossil fuels, biomass has oxygen amounts exceeding 10 wt%. Hydrodeoxygenation (HDO) is a crucial step in upgrading biomass to higher heating value liquid fuels. Oxygen removal has many challenges due to the complex chemistry and the high reactivity leading to irreversible catalyst deactivation. In this study, the focus is on the catalytic HDO of aromatic oxygen-containing model compounds in biomass: phenols and cresols. In the current work, literature on catalytic HDO of phenols using molecular hydrogen is reviewed, with a focus on non-nickel-based mono- and bi-metallic catalysts, as nickel-based catalysts were reviewed elsewhere. In addition, the catalytic HDO of m-cresol using molecular hydrogen is examined. This review also addresses the use of hydrogen donors for the HDO of phenols and cresols. The operating conditions, catalysts, products, and yields are summarized to find the catalyst with promising activity and high selectivity toward aromatics. A critical review of the reactions that successfully led to HDO is presented and research gaps related to the HDO of phenols and cresols are highlighted. The conclusions provide potential successful catalyst combinations that can be used for HDO of phenols, cresols, and liquid aromatic hydrocarbons.

与化石燃料不同,生物质的含氧量超过 10 wt%。加氢脱氧(HDO)是将生物质升级为高热值液体燃料的关键步骤。由于化学性质复杂,反应活性高,导致催化剂失活不可逆,因此脱氧面临许多挑战。本研究的重点是生物质中芳香族含氧模型化合物(苯酚和甲酚)的催化 HDO。本研究综述了使用分子氢催化苯酚的 HDO 的文献,重点是非镍基单金属和双金属催化剂,因为镍基催化剂已在其他地方进行了综述。此外,还研究了使用分子氢催化间甲酚的 HDO。本综述还讨论了使用氢供体对苯酚和甲酚进行 HDO 的问题。对操作条件、催化剂、产物和收率进行了总结,以找到对芳烃具有良好活性和高选择性的催化剂。对成功实现 HDO 的反应进行了严格审查,并强调了与苯酚和甲酚 HDO 相关的研究空白。结论提供了可用于苯酚、甲酚和液态芳香烃 HDO 的潜在成功催化剂组合。
{"title":"Catalytic Hydrodeoxygenation of Phenols and Cresols to Gasoline Range Biofuels.","authors":"Ahmed A Mohammed, Joy H Tannous","doi":"10.1002/tcr.202400092","DOIUrl":"https://doi.org/10.1002/tcr.202400092","url":null,"abstract":"<p><p>Unlike fossil fuels, biomass has oxygen amounts exceeding 10 wt%. Hydrodeoxygenation (HDO) is a crucial step in upgrading biomass to higher heating value liquid fuels. Oxygen removal has many challenges due to the complex chemistry and the high reactivity leading to irreversible catalyst deactivation. In this study, the focus is on the catalytic HDO of aromatic oxygen-containing model compounds in biomass: phenols and cresols. In the current work, literature on catalytic HDO of phenols using molecular hydrogen is reviewed, with a focus on non-nickel-based mono- and bi-metallic catalysts, as nickel-based catalysts were reviewed elsewhere. In addition, the catalytic HDO of m-cresol using molecular hydrogen is examined. This review also addresses the use of hydrogen donors for the HDO of phenols and cresols. The operating conditions, catalysts, products, and yields are summarized to find the catalyst with promising activity and high selectivity toward aromatics. A critical review of the reactions that successfully led to HDO is presented and research gaps related to the HDO of phenols and cresols are highlighted. The conclusions provide potential successful catalyst combinations that can be used for HDO of phenols, cresols, and liquid aromatic hydrocarbons.</p>","PeriodicalId":10046,"journal":{"name":"Chemical record","volume":null,"pages":null},"PeriodicalIF":7.0,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142131990","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Woodward-Hoffmann or Hoffmann-Woodward? Cycloadditions and the Transformation of Roald Hoffmann from a “Calculator” to an “Explainer”** 伍德沃德-霍夫曼还是霍夫曼-伍德沃德?环加成反应与罗尔德-霍夫曼从 "计算者 "到 "解释者 "的转变。
IF 7 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-08-27 DOI: 10.1002/tcr.202300181
Jeffrey I. Seeman

On May 1, 1965, Roald Hoffmann and R. B. Woodward published their second joint communication, Selection Rules for Concerted Cycloaddition Reactions, in the Journal of the American Chemical Society. Herein is presented a historical analysis of Woodward and Hoffmann's determination of the mechanism of cycloadditions. This analysis is based on thorough analyses with Roald Hoffmann of his 1964 and 1965 laboratory notebooks and his archived documents and on numerous in-person, video, and email interviews. This historical research pinpoints several seminal moments in chemistry and in the professional career of Hoffmann. For example, now documented is the fact that Woodward and Hoffmann had no anticipation that their collaboration would continue after the publication of their first 1965 communication on electrocyclizations. Also pinpointed is the moment in Hoffmann's professional and intellectual trajectories that he became a full-fledged, equal collaborator with Woodward and Hoffmann's transition from a “calculator” to an “explainer.”

1965 年 5 月 1 日,罗尔德-霍夫曼(Roald Hoffmann)和 R. B. 伍德沃德(R. B. Woodward)在《美国化学学会杂志》(Journal of the American Chemical Society)上发表了他们的第二篇联合通讯《协同环化反应的选择规则》(Selection Rules for Concerted Cycloaded Reactions)。本文对伍德沃德和霍夫曼确定环加成反应机理的历史进行了分析。该分析基于对罗纳德-霍夫曼(Roald Hoffmann)1964 年和 1965 年的实验笔记和档案文件的深入分析,以及大量的面谈、视频和电子邮件访谈。这项历史研究指出了霍夫曼在化学和职业生涯中的几个重要时刻。例如,伍德沃德和霍夫曼并没有预料到他们的合作会在 1965 年发表第一篇关于电环化的文章后继续下去,现在这一事实已被记录在案。此外,霍夫曼在其职业和思想轨迹中成为与伍德沃德平等的正式合作者的时刻,以及霍夫曼从 "计算者 "到 "解释者 "的转变,也被准确地记录下来。
{"title":"Woodward-Hoffmann or Hoffmann-Woodward? Cycloadditions and the Transformation of Roald Hoffmann from a “Calculator” to an “Explainer”**","authors":"Jeffrey I. Seeman","doi":"10.1002/tcr.202300181","DOIUrl":"10.1002/tcr.202300181","url":null,"abstract":"<p>On May 1, 1965, Roald Hoffmann and R. B. Woodward published their second joint communication, <i>Selection Rules for Concerted Cycloaddition Reactions</i>, in the <i>Journal of the American Chemical Society</i>. Herein is presented a historical analysis of Woodward and Hoffmann's determination of the mechanism of cycloadditions. This analysis is based on thorough analyses with Roald Hoffmann of his 1964 and 1965 laboratory notebooks and his archived documents and on numerous in-person, video, and email interviews. This historical research pinpoints several seminal moments in chemistry and in the professional career of Hoffmann. For example, now documented is the fact that Woodward and Hoffmann had no anticipation that their collaboration would continue after the publication of their first 1965 communication on electrocyclizations. Also pinpointed is the moment in Hoffmann's professional and intellectual trajectories that he became a full-fledged, equal collaborator with Woodward and Hoffmann's transition from a “calculator” to an “explainer.”</p>","PeriodicalId":10046,"journal":{"name":"Chemical record","volume":null,"pages":null},"PeriodicalIF":7.0,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/tcr.202300181","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142072214","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cover Picture: Utilization of Reactive Nitrogen Compounds for Nitrogen Circular Economy (Chem. Rec. 8/2024) 封面图片:利用反应性氮化合物实现氮循环经济(Chem. Rec. 8/2024)
IF 7 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-08-27 DOI: 10.1002/tcr.202480801
Dr. Tatsuo Kimura

Cover Picture: The cover image shows the recommendation of nitrogen circulating based on the development of a catalytic technology to recycle harmful nitrogen oxides (NOx), that should be purified to N2 before releasing to the atmosphere but artificially supplied through high-temperature combustion, as nitrogen compounds like valuable ammonia (NH3), possibly contributing to the sustainability with saving green land and blue sky in future. More details can be found in article number e2024000094 by Tatsuo Kimura (DOl: 10.1002/tcr.202400094.

封面图片:封面图片显示了基于催化技术开发的氮循环建议,该技术可将有害的氮氧化物(NOx)在释放到大气中之前净化为 N2,但通过高温燃烧人为地将其作为有价值的氨(NH3)等氮化合物提供给大气,从而可能在未来为保护绿地和蓝天的可持续发展做出贡献。更多详情,请参阅木村达夫(Tatsuo Kimura)撰写的编号为 e2024000094 的文章(DOl: 10.1002/tcr.202400094.X)。
{"title":"Cover Picture: Utilization of Reactive Nitrogen Compounds for Nitrogen Circular Economy (Chem. Rec. 8/2024)","authors":"Dr. Tatsuo Kimura","doi":"10.1002/tcr.202480801","DOIUrl":"https://doi.org/10.1002/tcr.202480801","url":null,"abstract":"<p>Cover Picture: The cover image shows the recommendation of nitrogen circulating based on the development of a catalytic technology to recycle harmful nitrogen oxides (NO<sub><i>x</i></sub>), that should be purified to N<sub>2</sub> before releasing to the atmosphere but artificially supplied through high-temperature combustion, as nitrogen compounds like valuable ammonia (NH<sub>3</sub>), possibly contributing to the sustainability with saving green land and blue sky in future. More details can be found in article number e2024000094 by Tatsuo Kimura (DOl: 10.1002/tcr.202400094.\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure>\u0000 </p>","PeriodicalId":10046,"journal":{"name":"Chemical record","volume":null,"pages":null},"PeriodicalIF":7.0,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/tcr.202480801","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142077844","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Stereoselective Synthesis of Glycosides via Tsuji-Trost Type Glycosylation Using 3,4-Carbonate Galactals. 利用 3,4-碳酸半乳糖通过辻-特罗斯特型糖基化立体选择性合成糖苷。
IF 7 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-08-21 DOI: 10.1002/tcr.202400067
Ye Lim Kim, Ju Hyun Kim

Pd-catalyzed stereoselective glycosylations using unsaturated sugar derivatives, glycals, have been successfully achieved in recent years. This review focuses on approaches to control the stereoselectivities of glycosides via π-allyl intermediates that mimic the Tsuji-Trost asymmetric allylic alkylation reactions, enabling stereoselectivity control through rational design. In the reaction process, zwitterionic Pd-π-allyl complexes, formed after the oxidative addition and decarboxylation, play a crucial role in increasing reactivities and enhancing the stereoselectivities of α- and β-glycosides. We summarized recently developed Tsuji-Trost type glycosylations using 3,4-carbonate galactals, featuring high efficiency, exclusive stereoselectivities, and a broad reaction scope including O-, N-, S-, and C-glycosylations.

近年来,利用不饱和糖衍生物(糖醛)进行钯催化的立体选择性糖基化反应已经成功实现。本综述重点介绍通过π-烯丙基中间体来控制糖苷的立体选择性的方法,这些中间体模仿了 Tsuji-Trost 不对称烯丙基烷基化反应,通过合理设计实现了立体选择性控制。在反应过程中,氧化加成和脱羧反应后形成的 Zwitterionic Pd-π-allyl 复合物在提高α-和β-糖苷的反应活性和立体选择性方面起着至关重要的作用。我们总结了最近开发的使用 3,4-碳酸半乳糖的辻-特罗斯特型糖基化反应,该反应具有高效率、独特的立体选择性以及广泛的反应范围,包括 O-、N-、S-和 C-糖基化反应。
{"title":"Stereoselective Synthesis of Glycosides via Tsuji-Trost Type Glycosylation Using 3,4-Carbonate Galactals.","authors":"Ye Lim Kim, Ju Hyun Kim","doi":"10.1002/tcr.202400067","DOIUrl":"https://doi.org/10.1002/tcr.202400067","url":null,"abstract":"<p><p>Pd-catalyzed stereoselective glycosylations using unsaturated sugar derivatives, glycals, have been successfully achieved in recent years. This review focuses on approaches to control the stereoselectivities of glycosides via π-allyl intermediates that mimic the Tsuji-Trost asymmetric allylic alkylation reactions, enabling stereoselectivity control through rational design. In the reaction process, zwitterionic Pd-π-allyl complexes, formed after the oxidative addition and decarboxylation, play a crucial role in increasing reactivities and enhancing the stereoselectivities of α- and β-glycosides. We summarized recently developed Tsuji-Trost type glycosylations using 3,4-carbonate galactals, featuring high efficiency, exclusive stereoselectivities, and a broad reaction scope including O-, N-, S-, and C-glycosylations.</p>","PeriodicalId":10046,"journal":{"name":"Chemical record","volume":null,"pages":null},"PeriodicalIF":7.0,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142016518","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ubiquitous Role of Phosphine-Based Water-Soluble Ligand in Promoting Catalytic Reactions in Water. 磷基水溶性配体在促进水中催化反应中的普遍作用
IF 7 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-08-20 DOI: 10.1002/tcr.202400057
Manisha A Patel, Anant R Kapdi

Catalysis has been at the forefront of the developments that has revolutionised synthesis and provided the impetus in the discovery of platform technologies for efficient C-C or C-X bond formation. Current environmental situation however, demands a change in strategy with catalysis being promoted more in solvents that are benign (Water) and for that the development of hydrophilic ligands (especially phosphines) is a necessity which could promote catalytic reactions in water, allow recyclability of the catalytic solutions and make it possible to isolate products using column-free techniques that involve lesser usage of hazardous organic solvents. In this review, we therefore critically analyse such catalytic processes providing examples that do follow the above-mentioned parameter.

催化技术一直处于发展的前沿,它彻底改变了合成技术,并推动了高效 C-C 或 C-X 键形成平台技术的发现。然而,当前的环境形势要求我们改变策略,更多地在良性溶剂(水)中促进催化反应,因此亲水性配体(尤其是膦类配体)的开发势在必行,这种配体可以促进水中的催化反应,使催化溶液可以循环使用,并可以使用无柱技术分离产品,从而减少有害有机溶剂的使用。因此,在本综述中,我们将对此类催化过程进行批判性分析,并提供确实符合上述参数的实例。
{"title":"Ubiquitous Role of Phosphine-Based Water-Soluble Ligand in Promoting Catalytic Reactions in Water.","authors":"Manisha A Patel, Anant R Kapdi","doi":"10.1002/tcr.202400057","DOIUrl":"https://doi.org/10.1002/tcr.202400057","url":null,"abstract":"<p><p>Catalysis has been at the forefront of the developments that has revolutionised synthesis and provided the impetus in the discovery of platform technologies for efficient C-C or C-X bond formation. Current environmental situation however, demands a change in strategy with catalysis being promoted more in solvents that are benign (Water) and for that the development of hydrophilic ligands (especially phosphines) is a necessity which could promote catalytic reactions in water, allow recyclability of the catalytic solutions and make it possible to isolate products using column-free techniques that involve lesser usage of hazardous organic solvents. In this review, we therefore critically analyse such catalytic processes providing examples that do follow the above-mentioned parameter.</p>","PeriodicalId":10046,"journal":{"name":"Chemical record","volume":null,"pages":null},"PeriodicalIF":7.0,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142003726","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biomimetic Nanoparticles for the Diagnosis and Therapy of Atherosclerosis. 用于诊断和治疗动脉粥样硬化的仿生纳米粒子。
IF 7 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-08-15 DOI: 10.1002/tcr.202400087
Yan Wang, Yize Li, Yuqing Lu, Jingjing Li

Atherosclerosis (AS) is a chronic inflammation of blood vessels, which often has no obvious symptoms in the early stage of the disease, but when atherosclerotic plaques are formed, they often cause lumen blockage, and even plaque rupture leads to thrombosis, that is the essential factor of cardiovascular events, for example myocardial infarction, cerebral infarction, and renal atrophy. Therefore, it is considerably significant for the early recognition and precise therapy of plaque. Biomimetic nanoparticles (BNPs), especially those coated with cell membranes, can retain the biological function of cell membranes or cells, which has led to extensive research and application in the diagnosis and treatment of AS in recent years. In this review, we summarized the roles of various key cells in AS progression, the construction of biomimetic nanoparticles based on these key cells as well as their applications in AS diagnosis and therapy. Furthermore, we give a challenge and prospect of biomimetic nanoparticles in AS, hoping to elevate their application quality and the possibility of clinical translation.

动脉粥样硬化(AS)是一种慢性血管炎症,在发病早期往往没有明显症状,但当动脉粥样硬化斑块形成后,往往会造成管腔堵塞,甚至斑块破裂导致血栓形成,是心肌梗死、脑梗死、肾萎缩等心血管事件的重要诱因。因此,早期识别和精确治疗斑块意义重大。仿生纳米粒子(BNPs),尤其是包覆细胞膜的纳米粒子,可以保留细胞膜或细胞的生物功能,近年来在强直性脊柱炎的诊断和治疗中得到了广泛的研究和应用。在这篇综述中,我们总结了各种关键细胞在强直性脊柱炎进展中的作用、基于这些关键细胞的仿生纳米颗粒的构建及其在强直性脊柱炎诊断和治疗中的应用。此外,我们还对生物仿生纳米颗粒在强直性脊柱炎中的应用提出了挑战和展望,希望能提高其应用质量和临床转化的可能性。
{"title":"Biomimetic Nanoparticles for the Diagnosis and Therapy of Atherosclerosis.","authors":"Yan Wang, Yize Li, Yuqing Lu, Jingjing Li","doi":"10.1002/tcr.202400087","DOIUrl":"https://doi.org/10.1002/tcr.202400087","url":null,"abstract":"<p><p>Atherosclerosis (AS) is a chronic inflammation of blood vessels, which often has no obvious symptoms in the early stage of the disease, but when atherosclerotic plaques are formed, they often cause lumen blockage, and even plaque rupture leads to thrombosis, that is the essential factor of cardiovascular events, for example myocardial infarction, cerebral infarction, and renal atrophy. Therefore, it is considerably significant for the early recognition and precise therapy of plaque. Biomimetic nanoparticles (BNPs), especially those coated with cell membranes, can retain the biological function of cell membranes or cells, which has led to extensive research and application in the diagnosis and treatment of AS in recent years. In this review, we summarized the roles of various key cells in AS progression, the construction of biomimetic nanoparticles based on these key cells as well as their applications in AS diagnosis and therapy. Furthermore, we give a challenge and prospect of biomimetic nanoparticles in AS, hoping to elevate their application quality and the possibility of clinical translation.</p>","PeriodicalId":10046,"journal":{"name":"Chemical record","volume":null,"pages":null},"PeriodicalIF":7.0,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141987525","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Research Advances of Cathode Materials for Rechargeable Aluminum Batteries. 可充电铝电池阴极材料的研究进展。
IF 7 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-08-15 DOI: 10.1002/tcr.202400085
Yanhong Gao, Dan Zhang, Shengrui Zhang, Le Li

Rechargeable aluminum ion batteries (AIBs) have recently gained widespread research concern as energy storage technologies because of their advantages of being safe, economical, environmentally friendly, sustainable, and displaying high performance. Nevertheless, the intense Coulombic interactions between the Al3+ ions with high charge density and the lattice of the electrode body lead to poor cathode kinetics and limited cycle life in AIBs. This paper reviews the recent advances in the cathode design of AIBs to gain a comprehensive understanding of the opportunities and challenges presented by current AIBs. In addition, the advantages, limitations, and possible solutions of each cathode material are discussed. Finally, the future development prospect of the cathode materials is presented.

可充电铝离子电池(AIBs)具有安全、经济、环保、可持续发展和高性能等优点,作为一种储能技术,近年来受到了广泛的研究关注。然而,高电荷密度的 Al3+ 离子与电极体晶格之间强烈的库仑相互作用导致 AIBs 阴极动力学性能不佳,循环寿命有限。本文回顾了 AIB 阴极设计的最新进展,以全面了解当前 AIB 带来的机遇和挑战。此外,还讨论了每种阴极材料的优势、局限性和可能的解决方案。最后,介绍了阴极材料的未来发展前景。
{"title":"Research Advances of Cathode Materials for Rechargeable Aluminum Batteries.","authors":"Yanhong Gao, Dan Zhang, Shengrui Zhang, Le Li","doi":"10.1002/tcr.202400085","DOIUrl":"https://doi.org/10.1002/tcr.202400085","url":null,"abstract":"<p><p>Rechargeable aluminum ion batteries (AIBs) have recently gained widespread research concern as energy storage technologies because of their advantages of being safe, economical, environmentally friendly, sustainable, and displaying high performance. Nevertheless, the intense Coulombic interactions between the Al<sup>3+</sup> ions with high charge density and the lattice of the electrode body lead to poor cathode kinetics and limited cycle life in AIBs. This paper reviews the recent advances in the cathode design of AIBs to gain a comprehensive understanding of the opportunities and challenges presented by current AIBs. In addition, the advantages, limitations, and possible solutions of each cathode material are discussed. Finally, the future development prospect of the cathode materials is presented.</p>","PeriodicalId":10046,"journal":{"name":"Chemical record","volume":null,"pages":null},"PeriodicalIF":7.0,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141987526","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Chemical record
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1