Robust tissue pattern formation by coupling morphogen signal and cell adhesion.

IF 6.5 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY EMBO Reports Pub Date : 2024-11-01 Epub Date: 2024-09-27 DOI:10.1038/s44319-024-00261-z
Kosuke Mizuno, Tsuyoshi Hirashima, Satoshi Toda
{"title":"Robust tissue pattern formation by coupling morphogen signal and cell adhesion.","authors":"Kosuke Mizuno, Tsuyoshi Hirashima, Satoshi Toda","doi":"10.1038/s44319-024-00261-z","DOIUrl":null,"url":null,"abstract":"<p><p>Morphogens, locally produced signaling molecules, form a concentration gradient to guide tissue patterning. Tissue patterns emerge as a collaboration between morphogen diffusion and responsive cell behaviors, but the mechanisms through which diffusing morphogens define precise spatial patterns amidst biological fluctuations remain unclear. To investigate how cells respond to diffusing proteins to generate tissue patterns, we develop SYMPLE3D, a 3D culture platform. By engineering gene expression responsive to artificial morphogens, we observe that coupling morphogen signals with cadherin-based adhesion is sufficient to convert a morphogen gradient into distinct tissue domains. Morphogen-induced cadherins gather activated cells into a single domain, removing ectopically activated cells. In addition, we reveal a switch-like induction of cadherin-mediated compaction and cell mixing, homogenizing activated cells within the morphogen gradient to form a uniformly activated domain with a sharp boundary. These findings highlight the cooperation between morphogen gradients and cell adhesion in robust tissue patterning and introduce a novel method for tissue engineering to develop new tissue domains in organoids.</p>","PeriodicalId":11541,"journal":{"name":"EMBO Reports","volume":" ","pages":"4803-4826"},"PeriodicalIF":6.5000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11549100/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EMBO Reports","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s44319-024-00261-z","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/27 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Morphogens, locally produced signaling molecules, form a concentration gradient to guide tissue patterning. Tissue patterns emerge as a collaboration between morphogen diffusion and responsive cell behaviors, but the mechanisms through which diffusing morphogens define precise spatial patterns amidst biological fluctuations remain unclear. To investigate how cells respond to diffusing proteins to generate tissue patterns, we develop SYMPLE3D, a 3D culture platform. By engineering gene expression responsive to artificial morphogens, we observe that coupling morphogen signals with cadherin-based adhesion is sufficient to convert a morphogen gradient into distinct tissue domains. Morphogen-induced cadherins gather activated cells into a single domain, removing ectopically activated cells. In addition, we reveal a switch-like induction of cadherin-mediated compaction and cell mixing, homogenizing activated cells within the morphogen gradient to form a uniformly activated domain with a sharp boundary. These findings highlight the cooperation between morphogen gradients and cell adhesion in robust tissue patterning and introduce a novel method for tissue engineering to develop new tissue domains in organoids.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过形态发生信号与细胞粘附的耦合,形成稳健的组织模式。
形态发生因子是一种局部产生的信号分子,可形成浓度梯度,引导组织形态的形成。组织形态是由形态发生因子的扩散和细胞的反应行为共同作用形成的,但扩散形态发生因子在生物波动中确定精确空间形态的机制仍不清楚。为了研究细胞如何对扩散蛋白做出反应以生成组织形态,我们开发了三维培养平台 SYMPLE3D。通过设计对人工形态发生素有反应的基因表达,我们观察到形态发生素信号与基于粘附素的粘附力的耦合足以将形态发生素梯度转化为不同的组织域。形态发生器诱导的粘附素将活化细胞聚集到单个区域,清除异位活化细胞。此外,我们还揭示了由粘着蛋白介导的压实和细胞混合的开关式诱导,使形态发生梯度内的活化细胞均匀化,形成一个边界清晰的均匀活化域。这些发现强调了形态发生梯度和细胞粘附在稳健的组织模式化过程中的合作,并为组织工程学引入了一种在器官组织中开发新组织域的新方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
EMBO Reports
EMBO Reports 生物-生化与分子生物学
CiteScore
11.20
自引率
1.30%
发文量
267
审稿时长
1 months
期刊介绍: EMBO Reports is a scientific journal that specializes in publishing research articles in the fields of molecular biology, cell biology, and developmental biology. The journal is known for its commitment to publishing high-quality, impactful research that provides novel physiological and functional insights. These insights are expected to be supported by robust evidence, with independent lines of inquiry validating the findings. The journal's scope includes both long and short-format papers, catering to different types of research contributions. It values studies that: Communicate major findings: Articles that report significant discoveries or advancements in the understanding of biological processes at the molecular, cellular, and developmental levels. Confirm important findings: Research that validates or supports existing knowledge in the field, reinforcing the reliability of previous studies. Refute prominent claims: Studies that challenge or disprove widely accepted ideas or hypotheses in the biosciences, contributing to the correction and evolution of scientific understanding. Present null data: Papers that report negative results or findings that do not support a particular hypothesis, which are crucial for the scientific process as they help to refine or redirect research efforts. EMBO Reports is dedicated to maintaining high standards of scientific rigor and integrity, ensuring that the research it publishes contributes meaningfully to the advancement of knowledge in the life sciences. By covering a broad spectrum of topics and encouraging the publication of both positive and negative results, the journal plays a vital role in promoting a comprehensive and balanced view of scientific inquiry. 
期刊最新文献
Interleukin-2-mediated NF-κB-dependent mRNA splicing modulates interferon gamma protein production. The DNA demethylase TET1 modifies the impact of maternal folic acid status on embryonic brain development. Soul Men and Women-what must science do to regain public trust? KMT5C leverages disorder to optimize cooperation with HP1 for heterochromatin retention. Regulating translation in aging: from global to gene-specific mechanisms.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1