The role of family and environment in determining the skin bacterial communities of captive aquatic frogs, Xenopus laevis.

IF 3.5 3区 生物学 Q2 MICROBIOLOGY FEMS microbiology ecology Pub Date : 2024-10-25 DOI:10.1093/femsec/fiae131
Phoebe A Chapman, Daniel Hudson, Xochitl C Morgan, Caroline W Beck
{"title":"The role of family and environment in determining the skin bacterial communities of captive aquatic frogs, Xenopus laevis.","authors":"Phoebe A Chapman, Daniel Hudson, Xochitl C Morgan, Caroline W Beck","doi":"10.1093/femsec/fiae131","DOIUrl":null,"url":null,"abstract":"<p><p>Skin microbes play an important role in amphibian tissue regeneration. Xenopus spp. (African clawed frogs) are well-established model organisms, and standard husbandry protocols, including use of antibiotics, may affect experimental outcomes by altering bacterial assemblages. It is therefore essential to improve knowledge of Xenopus bacterial community characteristics and inheritance. We undertook bacterial 16S rRNA gene sequencing and source tracking of a captive Xenopus laevis colony, including various life stages and environmental samples across multiple aquarium systems. Tank environments supported the most complex bacterial communities, while egg jelly bacteria were the most diverse of frog life stages; tadpole bacterial communities were relatively simple. Rhizobium (Proteobacteria) and Chryseobacterium (Bacteroidota) were dominant in tadpoles, whereas Chryseobacterium, Vogesella (Proteobacteria), and Acinetobacter (Proteobacteria) were common in females. Tadpoles received approximately two-thirds of their bacteria via vertical transmission, though 23 genera were differentially abundant between females and tadpoles. Female frog skin appears to select for specific taxa, and while tadpoles inherit a proportion of their skin bacteria from females via the egg, they support a distinct and less diverse community. The outcomes of this study suggest the impacts of breaking the bacterial transmission chain with antibiotic treatment should be considered when raising tadpoles for experimental purposes.</p>","PeriodicalId":12312,"journal":{"name":"FEMS microbiology ecology","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11503959/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"FEMS microbiology ecology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/femsec/fiae131","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Skin microbes play an important role in amphibian tissue regeneration. Xenopus spp. (African clawed frogs) are well-established model organisms, and standard husbandry protocols, including use of antibiotics, may affect experimental outcomes by altering bacterial assemblages. It is therefore essential to improve knowledge of Xenopus bacterial community characteristics and inheritance. We undertook bacterial 16S rRNA gene sequencing and source tracking of a captive Xenopus laevis colony, including various life stages and environmental samples across multiple aquarium systems. Tank environments supported the most complex bacterial communities, while egg jelly bacteria were the most diverse of frog life stages; tadpole bacterial communities were relatively simple. Rhizobium (Proteobacteria) and Chryseobacterium (Bacteroidota) were dominant in tadpoles, whereas Chryseobacterium, Vogesella (Proteobacteria), and Acinetobacter (Proteobacteria) were common in females. Tadpoles received approximately two-thirds of their bacteria via vertical transmission, though 23 genera were differentially abundant between females and tadpoles. Female frog skin appears to select for specific taxa, and while tadpoles inherit a proportion of their skin bacteria from females via the egg, they support a distinct and less diverse community. The outcomes of this study suggest the impacts of breaking the bacterial transmission chain with antibiotic treatment should be considered when raising tadpoles for experimental purposes.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
家庭和环境在决定圈养水生蛙皮肤细菌群落中的作用。
皮肤微生物在两栖动物组织再生过程中发挥着重要作用。非洲爪蛙(Xenopus spp.)是一种成熟的模式生物,标准饲养规程(包括抗生素的使用)可能会通过改变细菌群落来影响实验结果。因此,提高对爪蟾细菌群落特征和遗传的认识至关重要。我们对一个人工饲养的爪蟾群落进行了细菌 16S rRNA 基因测序和来源追踪,包括不同生命阶段和多个水族箱系统中的环境样本。水族箱环境支持最复杂的细菌群落,而卵冻的细菌群落是蛙类生命阶段中最多样化的;蝌蚪的细菌群落相对简单。蝌蚪体内主要是根瘤菌(蛋白质细菌)和干酪杆菌(类细菌群),而雌蛙体内则常见干酪杆菌、Vogesella(蛋白质细菌)和Acinetobacter(蛋白质细菌)。蝌蚪通过垂直传播获得了大约三分之二的细菌,但有 23 个菌属在雌蛙和蝌蚪中的数量不同。雌蛙的皮肤似乎会选择特定的类群,而蝌蚪虽然通过卵从雌蛙那里继承了一部分皮肤细菌,但它们所支持的群落却截然不同,多样性较低。这项研究的结果表明,在为实验目的饲养蝌蚪时,应考虑用抗生素治疗打破细菌传播链的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
FEMS microbiology ecology
FEMS microbiology ecology 生物-微生物学
CiteScore
7.50
自引率
2.40%
发文量
132
审稿时长
3 months
期刊介绍: FEMS Microbiology Ecology aims to ensure efficient publication of high-quality papers that are original and provide a significant contribution to the understanding of microbial ecology. The journal contains Research Articles and MiniReviews on fundamental aspects of the ecology of microorganisms in natural soil, aquatic and atmospheric habitats, including extreme environments, and in artificial or managed environments. Research papers on pure cultures and in the areas of plant pathology and medical, food or veterinary microbiology will be published where they provide valuable generic information on microbial ecology. Papers can deal with culturable and non-culturable forms of any type of microorganism: bacteria, archaea, filamentous fungi, yeasts, protozoa, cyanobacteria, algae or viruses. In addition, the journal will publish Perspectives, Current Opinion and Controversy Articles, Commentaries and Letters to the Editor on topical issues in microbial ecology. - Application of ecological theory to microbial ecology - Interactions and signalling between microorganisms and with plants and animals - Interactions between microorganisms and their physicochemical enviornment - Microbial aspects of biogeochemical cycles and processes - Microbial community ecology - Phylogenetic and functional diversity of microbial communities - Evolutionary biology of microorganisms
期刊最新文献
Genomic insights into key mechanisms for carbon, nitrogen, and phosphate assimilation by the acidophilic, halotolerant genus Acidihalobacter members. Ecological processes shaping highly connected bacterial communities along strong environmental gradients. Frankia [NiFe] uptake hydrogenases and genome reduction: different lineages of loss. Pollution gradients shape microbial communities associated with Ae. albopictus larval habitats in urban community gardens. The role of family and environment in determining the skin bacterial communities of captive aquatic frogs, Xenopus laevis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1