{"title":"Cellulose Fiber with Enhanced Mechanical Properties: The Role of Co-Solvents in Gel-like NMMO System.","authors":"Suhnue Kim, Darae Lee, Hyungsup Kim","doi":"10.3390/gels10090607","DOIUrl":null,"url":null,"abstract":"<p><p>Cellulose has garnered attention in the textile industry, but it exhibits limitations in applications that require high strength and modulus. In this study, regenerated cellulose fiber with enhanced mechanical properties was fabricated from a gel-like N-methylmorpholine N-oxide (NMMO)-cellulose solution by modulating the intermolecular interaction and conformation of the cellulose chains. To control the interaction, two types of co-solvents (dimethyl acetamide (DMAc) and dimethyl formamide (DMF)) were added to the cellulose solutions at varying concentrations (10, 20, and 30 wt%). Rheological analysis showed that the co-solvents reduced the solution viscosity by weakening intermolecular interactions. The calculated distance parameter (R<sub>a</sub>) in Hansen space confirmed that the co-solvent disrupted intermolecular hydrogen bonding within cellulose chains. The solutions were spun into fiber via a simple wet spinning process and were characterized by X-ray diffraction (XRD) and universal testing machine (UTM). The addition of co-solvent led to an increased crystallinity index (C.I.) owing to the extended cellulose chains. The modulus of the resulting fiber was increased when the co-solvent concentration was 10 wt%, regardless of the co-solvent type. This study demonstrates the potential for enhancing the mechanical properties of cellulose-based products by modulating the conformation and interaction of cellulose chains through the addition of co-solvent.</p>","PeriodicalId":12506,"journal":{"name":"Gels","volume":"10 9","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11430876/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gels","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/gels10090607","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Cellulose has garnered attention in the textile industry, but it exhibits limitations in applications that require high strength and modulus. In this study, regenerated cellulose fiber with enhanced mechanical properties was fabricated from a gel-like N-methylmorpholine N-oxide (NMMO)-cellulose solution by modulating the intermolecular interaction and conformation of the cellulose chains. To control the interaction, two types of co-solvents (dimethyl acetamide (DMAc) and dimethyl formamide (DMF)) were added to the cellulose solutions at varying concentrations (10, 20, and 30 wt%). Rheological analysis showed that the co-solvents reduced the solution viscosity by weakening intermolecular interactions. The calculated distance parameter (Ra) in Hansen space confirmed that the co-solvent disrupted intermolecular hydrogen bonding within cellulose chains. The solutions were spun into fiber via a simple wet spinning process and were characterized by X-ray diffraction (XRD) and universal testing machine (UTM). The addition of co-solvent led to an increased crystallinity index (C.I.) owing to the extended cellulose chains. The modulus of the resulting fiber was increased when the co-solvent concentration was 10 wt%, regardless of the co-solvent type. This study demonstrates the potential for enhancing the mechanical properties of cellulose-based products by modulating the conformation and interaction of cellulose chains through the addition of co-solvent.
期刊介绍:
The journal Gels (ISSN 2310-2861) is an international, open access journal on physical (supramolecular) and chemical gel-based materials. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the maximum length of the papers, and full experimental details must be provided so that the results can be reproduced. Short communications, full research papers and review papers are accepted formats for the preparation of the manuscripts.
Gels aims to serve as a reference journal with a focus on gel materials for researchers working in both academia and industry. Therefore, papers demonstrating practical applications of these materials are particularly welcome. Occasionally, invited contributions (i.e., original research and review articles) on emerging issues and high-tech applications of gels are published as special issues.