Cellulose Fiber with Enhanced Mechanical Properties: The Role of Co-Solvents in Gel-like NMMO System.

IF 5 3区 化学 Q1 POLYMER SCIENCE Gels Pub Date : 2024-09-23 DOI:10.3390/gels10090607
Suhnue Kim, Darae Lee, Hyungsup Kim
{"title":"Cellulose Fiber with Enhanced Mechanical Properties: The Role of Co-Solvents in Gel-like NMMO System.","authors":"Suhnue Kim, Darae Lee, Hyungsup Kim","doi":"10.3390/gels10090607","DOIUrl":null,"url":null,"abstract":"<p><p>Cellulose has garnered attention in the textile industry, but it exhibits limitations in applications that require high strength and modulus. In this study, regenerated cellulose fiber with enhanced mechanical properties was fabricated from a gel-like N-methylmorpholine N-oxide (NMMO)-cellulose solution by modulating the intermolecular interaction and conformation of the cellulose chains. To control the interaction, two types of co-solvents (dimethyl acetamide (DMAc) and dimethyl formamide (DMF)) were added to the cellulose solutions at varying concentrations (10, 20, and 30 wt%). Rheological analysis showed that the co-solvents reduced the solution viscosity by weakening intermolecular interactions. The calculated distance parameter (R<sub>a</sub>) in Hansen space confirmed that the co-solvent disrupted intermolecular hydrogen bonding within cellulose chains. The solutions were spun into fiber via a simple wet spinning process and were characterized by X-ray diffraction (XRD) and universal testing machine (UTM). The addition of co-solvent led to an increased crystallinity index (C.I.) owing to the extended cellulose chains. The modulus of the resulting fiber was increased when the co-solvent concentration was 10 wt%, regardless of the co-solvent type. This study demonstrates the potential for enhancing the mechanical properties of cellulose-based products by modulating the conformation and interaction of cellulose chains through the addition of co-solvent.</p>","PeriodicalId":12506,"journal":{"name":"Gels","volume":null,"pages":null},"PeriodicalIF":5.0000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11430876/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gels","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/gels10090607","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Cellulose has garnered attention in the textile industry, but it exhibits limitations in applications that require high strength and modulus. In this study, regenerated cellulose fiber with enhanced mechanical properties was fabricated from a gel-like N-methylmorpholine N-oxide (NMMO)-cellulose solution by modulating the intermolecular interaction and conformation of the cellulose chains. To control the interaction, two types of co-solvents (dimethyl acetamide (DMAc) and dimethyl formamide (DMF)) were added to the cellulose solutions at varying concentrations (10, 20, and 30 wt%). Rheological analysis showed that the co-solvents reduced the solution viscosity by weakening intermolecular interactions. The calculated distance parameter (Ra) in Hansen space confirmed that the co-solvent disrupted intermolecular hydrogen bonding within cellulose chains. The solutions were spun into fiber via a simple wet spinning process and were characterized by X-ray diffraction (XRD) and universal testing machine (UTM). The addition of co-solvent led to an increased crystallinity index (C.I.) owing to the extended cellulose chains. The modulus of the resulting fiber was increased when the co-solvent concentration was 10 wt%, regardless of the co-solvent type. This study demonstrates the potential for enhancing the mechanical properties of cellulose-based products by modulating the conformation and interaction of cellulose chains through the addition of co-solvent.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有增强机械性能的纤维素纤维:凝胶状 NMMO 系统中助溶剂的作用。
纤维素在纺织工业中备受关注,但在需要高强度和高模量的应用中却表现出局限性。在这项研究中,通过调节纤维素链的分子间相互作用和构象,利用凝胶状 N-甲基吗啉 N-氧化物(NMMO)-纤维素溶液制造出了机械性能更强的再生纤维素纤维。为了控制相互作用,在纤维素溶液中加入了两种不同浓度(10、20 和 30 wt%)的助溶剂(二甲基乙酰胺(DMAc)和二甲基甲酰胺(DMF))。流变分析表明,助溶剂削弱了分子间的相互作用,从而降低了溶液粘度。汉森空间计算的距离参数(Ra)证实,助溶剂破坏了纤维素链中的分子间氢键。通过简单的湿法纺丝工艺将溶液纺成纤维,并通过 X 射线衍射(XRD)和万能试验机(UTM)进行表征。由于纤维素链的延长,共溶剂的加入导致结晶度指数(C.I.)增加。当助溶剂浓度为 10 wt% 时,无论助溶剂类型如何,纤维的模量都会增加。这项研究表明,通过添加助溶剂调节纤维素链的构象和相互作用,有可能提高纤维素基产品的机械性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Gels
Gels POLYMER SCIENCE-
CiteScore
4.70
自引率
19.60%
发文量
707
审稿时长
11 weeks
期刊最新文献
Dual-Action Gemcitabine Delivery: Chitosan-Magnetite-Zeolite Capsules for Targeted Cancer Therapy and Antibacterial Defense. Emulsion Structural Remodeling in Milk and Its Gelling Products: A Review. Process Mapping of the Sol-Gel Transition in Acid-Initiated Sodium Silicate Solutions. Microencapsulation Efficiency of Carboxymethylcellulose, Gelatin, Maltodextrin, and Acacia for Aroma Preservation in Jasmine Instant Tea. Cross-Linked Polyimide Aerogels with Excellent Thermal and Mechanical Properties.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1